Formation of dendrimer-guest complexes as a strategy to increase the solubility of a phenazine N, N0-dioxide derivative with antitumor activity

Dib, N. - Fernández, L. - Santo, M. - Otero, L. - Alustiza, F. - Liaudat, A. - Bosch, P. - Lavaggi, M. Laura - Cerecetto, Hugo - González, Mercedes

Resumen:

Poly(amidoamine) and Poly(propylenimine) dendrimers with different generations and peripheral groups were studied as solubility enhancers and nanocarriers for 7-bromo-2-hydroxy-phenazine N5,N10-dioxide. This compound possesses potential antitumoral and anti-trypanosomal activity, but its low solubility in physiological media precludes its possible application as therapeutic drug. The amino terminated dendrimers association with the active compounds as observed trough NMR studies showed that electrostatic interactions are essential in the solubilization enhancement process. The obtaining of a stable and no cytotoxic formulation makes the drug-carried association a suitable strategy for the generation of a drug delivery system for phenazine derivatives.


Detalles Bibliográficos
2019
Organic chemistry
Physical chemistry
Pharmaceutical chemistry
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/27211
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Resumen:
Sumario:Poly(amidoamine) and Poly(propylenimine) dendrimers with different generations and peripheral groups were studied as solubility enhancers and nanocarriers for 7-bromo-2-hydroxy-phenazine N5,N10-dioxide. This compound possesses potential antitumoral and anti-trypanosomal activity, but its low solubility in physiological media precludes its possible application as therapeutic drug. The amino terminated dendrimers association with the active compounds as observed trough NMR studies showed that electrostatic interactions are essential in the solubilization enhancement process. The obtaining of a stable and no cytotoxic formulation makes the drug-carried association a suitable strategy for the generation of a drug delivery system for phenazine derivatives.