K-theory of n-coherent rings
Resumen:
Let R be a strong n-coherent ring such that each finitely n-presented R-module has finite projective dimension. We consider FPₙ(R) the full subcategory of R-Mod of finitely n-presented modules. We prove that FPₙ(R) is an exact category, Kᵢ(R) = Kᵢ(FPₙ(R)) for every i ≥ 0 and we obtain an expression of Nilᵢ(R)
2022 | |
ANII - FCE_3_2018_1_148588 | |
K-theory Strong n-coherence Regularities properties |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://www.worldscientific.com/doi/10.1142/S021949882350007X
https://www.worldscientific.com/worldscinet/jaa https://arxiv.org/abs/2008.09256 https://hdl.handle.net/20.500.12008/33741 |
|
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
Sumario: | Let R be a strong n-coherent ring such that each finitely n-presented R-module has finite projective dimension. We consider FPₙ(R) the full subcategory of R-Mod of finitely n-presented modules. We prove that FPₙ(R) is an exact category, Kᵢ(R) = Kᵢ(FPₙ(R)) for every i ≥ 0 and we obtain an expression of Nilᵢ(R) |
---|