A study of deep learning and its applications to face recognition techniques

Suzacq, Fernando

Supervisor(es): Di Martino, Matías - Delbracio, Mauricio

Resumen:

El siguiente trabajo es el resultado de la tesis de maestría de Fernando Suzacq. La tesis se centró alrededor de la investigación sobre el reconocimiento facial en 3D, sin la reconstrucción de la profundidad ni la utilización de modelos 3D genéricos. Esta investigación resultó en la escritura de un paper y su posterior publicación en IEEE Transactions on Pattern Analysis and Machine Intelligence. Mediante el uso de iluminación activa, se mejora el reconocimiento facial en 2D y se lo hace más robusto a condiciones de baja iluminación o ataques de falsificación de identidad. La idea central del trabajo es la proyección de un patrón de luz de alta frecuencia sobre la cara de prueba. De la captura de esta imagen, nos es posible recuperar información real 3D, que se desprende de las deformaciones de este patrón, junto con una imagen 2D de la cara de prueba. Este proceso evita tener que lidiar con la difícil tarea de reconstrucción 3D. En el trabajo se presenta la teoría que fundamenta este proceso, se explica su construcción y se proveen los resultados de distintos experimentos realizados que sostienen su validez y utilidad. Para el desarrollo de esta investigación, fue necesario el estudio de la teoría existente y una revisión del estado del arte en este problema particular. Parte del resultado de este trabajo se presenta también en este documento, como marco teórico sobre la publicación.


Detalles Bibliográficos
2021
Differential 3D
Active stereo
Face recognition
Spoofing detection
3D facial analysis
Feature extraction
Stereo image processing
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/31632
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523179417042944
author Suzacq, Fernando
author_facet Suzacq, Fernando
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
b04686d2cfd0ab0b8107fc77d512437c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/31632/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/31632/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/31632/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/31632/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/31632/1/Suz21.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Suzacq Fernando, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.advisor.none.fl_str_mv Di Martino, Matías
Delbracio, Mauricio
dc.creator.none.fl_str_mv Suzacq, Fernando
dc.date.accessioned.none.fl_str_mv 2022-05-23T11:30:44Z
dc.date.available.none.fl_str_mv 2022-05-23T11:30:44Z
dc.date.issued.none.fl_str_mv 2021
dc.description.abstract.none.fl_txt_mv El siguiente trabajo es el resultado de la tesis de maestría de Fernando Suzacq. La tesis se centró alrededor de la investigación sobre el reconocimiento facial en 3D, sin la reconstrucción de la profundidad ni la utilización de modelos 3D genéricos. Esta investigación resultó en la escritura de un paper y su posterior publicación en IEEE Transactions on Pattern Analysis and Machine Intelligence. Mediante el uso de iluminación activa, se mejora el reconocimiento facial en 2D y se lo hace más robusto a condiciones de baja iluminación o ataques de falsificación de identidad. La idea central del trabajo es la proyección de un patrón de luz de alta frecuencia sobre la cara de prueba. De la captura de esta imagen, nos es posible recuperar información real 3D, que se desprende de las deformaciones de este patrón, junto con una imagen 2D de la cara de prueba. Este proceso evita tener que lidiar con la difícil tarea de reconstrucción 3D. En el trabajo se presenta la teoría que fundamenta este proceso, se explica su construcción y se proveen los resultados de distintos experimentos realizados que sostienen su validez y utilidad. Para el desarrollo de esta investigación, fue necesario el estudio de la teoría existente y una revisión del estado del arte en este problema particular. Parte del resultado de este trabajo se presenta también en este documento, como marco teórico sobre la publicación.
dc.format.extent.es.fl_str_mv 91 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Suzacq, F. A study of deep learning and its applications to face recognition techniques [en línea]. Tesis de maestría. Montevideo : Udelar. FI. IIE, 2021.
dc.identifier.issn.none.fl_str_mv 1688-2806
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/31632
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Udelar.FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Differential 3D
Active stereo
Face recognition
Spoofing detection
3D facial analysis
Feature extraction
Stereo image processing
dc.title.none.fl_str_mv A study of deep learning and its applications to face recognition techniques
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description El siguiente trabajo es el resultado de la tesis de maestría de Fernando Suzacq. La tesis se centró alrededor de la investigación sobre el reconocimiento facial en 3D, sin la reconstrucción de la profundidad ni la utilización de modelos 3D genéricos. Esta investigación resultó en la escritura de un paper y su posterior publicación en IEEE Transactions on Pattern Analysis and Machine Intelligence. Mediante el uso de iluminación activa, se mejora el reconocimiento facial en 2D y se lo hace más robusto a condiciones de baja iluminación o ataques de falsificación de identidad. La idea central del trabajo es la proyección de un patrón de luz de alta frecuencia sobre la cara de prueba. De la captura de esta imagen, nos es posible recuperar información real 3D, que se desprende de las deformaciones de este patrón, junto con una imagen 2D de la cara de prueba. Este proceso evita tener que lidiar con la difícil tarea de reconstrucción 3D. En el trabajo se presenta la teoría que fundamenta este proceso, se explica su construcción y se proveen los resultados de distintos experimentos realizados que sostienen su validez y utilidad. Para el desarrollo de esta investigación, fue necesario el estudio de la teoría existente y una revisión del estado del arte en este problema particular. Parte del resultado de este trabajo se presenta también en este documento, como marco teórico sobre la publicación.
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_558b75cf803b4f0593ae5f7ecf7bff4e
identifier_str_mv Suzacq, F. A study of deep learning and its applications to face recognition techniques [en línea]. Tesis de maestría. Montevideo : Udelar. FI. IIE, 2021.
1688-2806
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/31632
publishDate 2021
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Suzacq Fernando, Universidad de la República (Uruguay). Facultad de Ingeniería.2022-05-23T11:30:44Z2022-05-23T11:30:44Z2021Suzacq, F. A study of deep learning and its applications to face recognition techniques [en línea]. Tesis de maestría. Montevideo : Udelar. FI. IIE, 2021.1688-2806https://hdl.handle.net/20.500.12008/31632El siguiente trabajo es el resultado de la tesis de maestría de Fernando Suzacq. La tesis se centró alrededor de la investigación sobre el reconocimiento facial en 3D, sin la reconstrucción de la profundidad ni la utilización de modelos 3D genéricos. Esta investigación resultó en la escritura de un paper y su posterior publicación en IEEE Transactions on Pattern Analysis and Machine Intelligence. Mediante el uso de iluminación activa, se mejora el reconocimiento facial en 2D y se lo hace más robusto a condiciones de baja iluminación o ataques de falsificación de identidad. La idea central del trabajo es la proyección de un patrón de luz de alta frecuencia sobre la cara de prueba. De la captura de esta imagen, nos es posible recuperar información real 3D, que se desprende de las deformaciones de este patrón, junto con una imagen 2D de la cara de prueba. Este proceso evita tener que lidiar con la difícil tarea de reconstrucción 3D. En el trabajo se presenta la teoría que fundamenta este proceso, se explica su construcción y se proveen los resultados de distintos experimentos realizados que sostienen su validez y utilidad. Para el desarrollo de esta investigación, fue necesario el estudio de la teoría existente y una revisión del estado del arte en este problema particular. Parte del resultado de este trabajo se presenta también en este documento, como marco teórico sobre la publicación.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2022-05-20T13:18:11Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Suz21.pdf: 2072683 bytes, checksum: b04686d2cfd0ab0b8107fc77d512437c (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-05-20T17:12:24Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Suz21.pdf: 2072683 bytes, checksum: b04686d2cfd0ab0b8107fc77d512437c (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-05-23T11:30:44Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Suz21.pdf: 2072683 bytes, checksum: b04686d2cfd0ab0b8107fc77d512437c (MD5) Previous issue date: 202191 p.application/pdfenengUdelar.FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Differential 3DActive stereoFace recognitionSpoofing detection3D facial analysisFeature extractionStereo image processingA study of deep learning and its applications to face recognition techniquesTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaSuzacq, FernandoDi Martino, MatíasDelbracio, MauricioUniversidad de la República (Uruguay). Facultad de IngenieríaMagíster en Ingeniería (Ingeniería Eléctrica)LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/31632/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/31632/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/31632/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/31632/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALSuz21.pdfSuz21.pdfapplication/pdf2072683http://localhost:8080/xmlui/bitstream/20.500.12008/31632/1/Suz21.pdfb04686d2cfd0ab0b8107fc77d512437cMD5120.500.12008/316322022-05-23 08:30:45.0oai:colibri.udelar.edu.uy:20.500.12008/31632VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:18.308250COLIBRI - Universidad de la Repúblicafalse
spellingShingle A study of deep learning and its applications to face recognition techniques
Suzacq, Fernando
Differential 3D
Active stereo
Face recognition
Spoofing detection
3D facial analysis
Feature extraction
Stereo image processing
status_str acceptedVersion
title A study of deep learning and its applications to face recognition techniques
title_full A study of deep learning and its applications to face recognition techniques
title_fullStr A study of deep learning and its applications to face recognition techniques
title_full_unstemmed A study of deep learning and its applications to face recognition techniques
title_short A study of deep learning and its applications to face recognition techniques
title_sort A study of deep learning and its applications to face recognition techniques
topic Differential 3D
Active stereo
Face recognition
Spoofing detection
3D facial analysis
Feature extraction
Stereo image processing
url https://hdl.handle.net/20.500.12008/31632