Finite element algorithms for nonlocal minimal graphs
Resumen:
We discuss computational and qualitative aspects of the fractional Plateau and the prescribed fractional mean curvature problems on bounded domains subject to exterior data being a subgraph. We recast these problems in terms of energy minimization, and we discretize the latter with piecewise linear finite elements. For the computation of the discrete solutions, we propose and study a gradient flow and a Newton scheme, and we quantify the effect of Dirichlet data truncation. We also present a wide variety of numerical experiments that illustrate qualitative and quantitative features of fractional minimal graphs and the associated discrete problems.
2022 | |
Nonlocal minimal surfaces Finite elements Fractional diffusion |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/41307 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Finite element approximation of fractional Neumann problems
Autor(es):: Borthagaray, Juan Pablo
Fecha de publicación:: (2022) -
Evaluation of preheating impact on weld residual stresses in AH-36 steel using Finite Element Analysis
Autor(es):: Shazad, Atif
Fecha de publicación:: (2024) -
Analysis of Rabin's irreducibility test for polynomials over finite fields
Autor(es):: Panario, Daniel
Fecha de publicación:: (2001) -
Assemblock Building System: An experimental study for technical feasibility and a building execution
Autor(es):: Rudeli, Natalia
Fecha de publicación:: (2016) -
Implementation of a Model for Perceptual Completion in R2×S1
Autor(es):: Sanguinetti, Gonzalo
Fecha de publicación:: (2009)