Statistical learning and convolutional neural networks for supervised and unsupervised restoration of satellite images in low light conditions.

Sánchez Laguardia, Manuel

Supervisor(es): Kervrann, Charles - Moebel, Emmanuel - Herbreteau, Sébastien

Resumen:

This manuscript is the result of Manuel Sánchez Laguardia’s end-of-studies internship as part of his engineering studies at IMT Atlantique and Universidad de la República. The development of this work began the 1st of April 2023 and extended until the 30th of September 2023, for a total duration of six months. The internship was carried under the mentorship of Charles Kervrann and Emmanuel Moebel. It covered two main projects, both related to the subject of this internship: "Statistical learning and convolutional neural networks for supervised and unsupervised restoration of satellite images in low light conditions" This document is divided into 7 main Sections. First, the introduction to the mission, where the context, background and expected results are explained. Then, the presentation of the hosting organization. Next, the developed work and methodology, where the two main projects are presented in separate Sections. Then, the conclusions followed by the perspectives of the project. Finally, a reflection on my professional project for the future and its link with this internship. The first project consisted in studying the statistics behind the gradient descent used to estimate parameters of convolutional neural networks. This was achieved via the study of a well-known machine learning algorithm used for denoising: Deep Image Prior [1]. This analysis gave very interesting results. It showed that the direction of the parameters vector of the neural network throughout the iterations, could be explained almost entirely with just one PCA (Principal Component Analysis) vector. However, it also showed that from one iteration to the next, the parameters change almost randomly, and no information could be extracted from them as whole. This first project was set aside to be worked on, possibly, towards the end of the internship. The second project consisted in performing image restoration methods by combining denoising and deconvolution, using different techniques. I focused on satellite images in low light conditions, as this is what the team has been working since they partnered up with Airbus Space and Defense. The goal was to explore how this different methods performed, and draw conclusions in terms of performances (PSNR) and time computations. It was found that the type of noise had a high impact on the result of the methods. Also, it was shown experimentally that training one of the supervised methods using microscopy images, which are similar to night satellite images, produces very good results and are a good fit for the training phase.


Detalles Bibliográficos
2023
Imágenes
Restauración de imágenes
Procesamiento de señales
Aprendizaje automático
Redes neuronales
CNN
Eliminación de ruido
Deconvolución
Imágenes satelitales
Aprendizaje estadístico
Aprendizaje profundo
Machine Learning
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/43980
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523106631188480
author Sánchez Laguardia, Manuel
author_facet Sánchez Laguardia, Manuel
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
6d6e490f4468ecf5055a84af48d45653
489f03e71d39068f329bdec8798bce58
3752c46271d0626e474cf5c9342cd526
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/43980/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/43980/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/43980/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/43980/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/43980/1/San23.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Sánchez Laguardia Manuel, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.advisor.none.fl_str_mv Kervrann, Charles
Moebel, Emmanuel
Herbreteau, Sébastien
dc.creator.none.fl_str_mv Sánchez Laguardia, Manuel
dc.date.accessioned.none.fl_str_mv 2024-06-04T13:47:52Z
dc.date.available.none.fl_str_mv 2024-06-04T13:47:52Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv This manuscript is the result of Manuel Sánchez Laguardia’s end-of-studies internship as part of his engineering studies at IMT Atlantique and Universidad de la República. The development of this work began the 1st of April 2023 and extended until the 30th of September 2023, for a total duration of six months. The internship was carried under the mentorship of Charles Kervrann and Emmanuel Moebel. It covered two main projects, both related to the subject of this internship: "Statistical learning and convolutional neural networks for supervised and unsupervised restoration of satellite images in low light conditions" This document is divided into 7 main Sections. First, the introduction to the mission, where the context, background and expected results are explained. Then, the presentation of the hosting organization. Next, the developed work and methodology, where the two main projects are presented in separate Sections. Then, the conclusions followed by the perspectives of the project. Finally, a reflection on my professional project for the future and its link with this internship. The first project consisted in studying the statistics behind the gradient descent used to estimate parameters of convolutional neural networks. This was achieved via the study of a well-known machine learning algorithm used for denoising: Deep Image Prior [1]. This analysis gave very interesting results. It showed that the direction of the parameters vector of the neural network throughout the iterations, could be explained almost entirely with just one PCA (Principal Component Analysis) vector. However, it also showed that from one iteration to the next, the parameters change almost randomly, and no information could be extracted from them as whole. This first project was set aside to be worked on, possibly, towards the end of the internship. The second project consisted in performing image restoration methods by combining denoising and deconvolution, using different techniques. I focused on satellite images in low light conditions, as this is what the team has been working since they partnered up with Airbus Space and Defense. The goal was to explore how this different methods performed, and draw conclusions in terms of performances (PSNR) and time computations. It was found that the type of noise had a high impact on the result of the methods. Also, it was shown experimentally that training one of the supervised methods using microscopy images, which are similar to night satellite images, produces very good results and are a good fit for the training phase.
dc.description.es.fl_txt_mv Este manuscrito es el resultado de la pasantía de fin de carrera de Manuel Sánchez Laguardia como parte de sus estudios de ingeniería en el IMT Atlantique y la Universidad de la República.
dc.format.extent.es.fl_str_mv 39 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Sánchez Laguardia, M. Statistical learning and convolutional neural networks for supervised and unsupervised restoration of satellite images in low light conditions [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE, 2023.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/43980
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Udelar.FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Imágenes
Restauración de imágenes
Procesamiento de señales
Aprendizaje automático
Redes neuronales
CNN
Eliminación de ruido
Deconvolución
Imágenes satelitales
Aprendizaje estadístico
Aprendizaje profundo
Machine Learning
dc.title.none.fl_str_mv Statistical learning and convolutional neural networks for supervised and unsupervised restoration of satellite images in low light conditions.
dc.type.es.fl_str_mv Tesis de grado
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Este manuscrito es el resultado de la pasantía de fin de carrera de Manuel Sánchez Laguardia como parte de sus estudios de ingeniería en el IMT Atlantique y la Universidad de la República.
eu_rights_str_mv openAccess
format bachelorThesis
id COLIBRI_538c8a932fedbfb8d04499d17926954c
identifier_str_mv Sánchez Laguardia, M. Statistical learning and convolutional neural networks for supervised and unsupervised restoration of satellite images in low light conditions [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE, 2023.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/43980
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Sánchez Laguardia Manuel, Universidad de la República (Uruguay). Facultad de Ingeniería.2024-06-04T13:47:52Z2024-06-04T13:47:52Z2023Sánchez Laguardia, M. Statistical learning and convolutional neural networks for supervised and unsupervised restoration of satellite images in low light conditions [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE, 2023.https://hdl.handle.net/20.500.12008/43980Este manuscrito es el resultado de la pasantía de fin de carrera de Manuel Sánchez Laguardia como parte de sus estudios de ingeniería en el IMT Atlantique y la Universidad de la República.This manuscript is the result of Manuel Sánchez Laguardia’s end-of-studies internship as part of his engineering studies at IMT Atlantique and Universidad de la República. The development of this work began the 1st of April 2023 and extended until the 30th of September 2023, for a total duration of six months. The internship was carried under the mentorship of Charles Kervrann and Emmanuel Moebel. It covered two main projects, both related to the subject of this internship: "Statistical learning and convolutional neural networks for supervised and unsupervised restoration of satellite images in low light conditions" This document is divided into 7 main Sections. First, the introduction to the mission, where the context, background and expected results are explained. Then, the presentation of the hosting organization. Next, the developed work and methodology, where the two main projects are presented in separate Sections. Then, the conclusions followed by the perspectives of the project. Finally, a reflection on my professional project for the future and its link with this internship. The first project consisted in studying the statistics behind the gradient descent used to estimate parameters of convolutional neural networks. This was achieved via the study of a well-known machine learning algorithm used for denoising: Deep Image Prior [1]. This analysis gave very interesting results. It showed that the direction of the parameters vector of the neural network throughout the iterations, could be explained almost entirely with just one PCA (Principal Component Analysis) vector. However, it also showed that from one iteration to the next, the parameters change almost randomly, and no information could be extracted from them as whole. This first project was set aside to be worked on, possibly, towards the end of the internship. The second project consisted in performing image restoration methods by combining denoising and deconvolution, using different techniques. I focused on satellite images in low light conditions, as this is what the team has been working since they partnered up with Airbus Space and Defense. The goal was to explore how this different methods performed, and draw conclusions in terms of performances (PSNR) and time computations. It was found that the type of noise had a high impact on the result of the methods. Also, it was shown experimentally that training one of the supervised methods using microscopy images, which are similar to night satellite images, produces very good results and are a good fit for the training phase.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2024-06-03T16:29:47Z No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) San23.pdf: 13634078 bytes, checksum: 3752c46271d0626e474cf5c9342cd526 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2024-06-04T13:04:51Z (GMT) No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) San23.pdf: 13634078 bytes, checksum: 3752c46271d0626e474cf5c9342cd526 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2024-06-04T13:47:52Z (GMT). No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) San23.pdf: 13634078 bytes, checksum: 3752c46271d0626e474cf5c9342cd526 (MD5) Previous issue date: 202339 p.application/pdfenengUdelar.FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)ImágenesRestauración de imágenesProcesamiento de señalesAprendizaje automáticoRedes neuronalesCNNEliminación de ruidoDeconvoluciónImágenes satelitalesAprendizaje estadísticoAprendizaje profundoMachine LearningStatistical learning and convolutional neural networks for supervised and unsupervised restoration of satellite images in low light conditions.Tesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaSánchez Laguardia, ManuelKervrann, CharlesMoebel, EmmanuelHerbreteau, SébastienUniversidad de la República (Uruguay). Facultad de Ingeniería.Ingeniero en Sistemas de ComunicaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/43980/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/43980/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-822465http://localhost:8080/xmlui/bitstream/20.500.12008/43980/3/license_text6d6e490f4468ecf5055a84af48d45653MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-825790http://localhost:8080/xmlui/bitstream/20.500.12008/43980/4/license_rdf489f03e71d39068f329bdec8798bce58MD54ORIGINALSan23.pdfSan23.pdfapplication/pdf13634078http://localhost:8080/xmlui/bitstream/20.500.12008/43980/1/San23.pdf3752c46271d0626e474cf5c9342cd526MD5120.500.12008/439802024-06-04 13:50:48.117oai:colibri.udelar.edu.uy:20.500.12008/43980VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:40:55.358519COLIBRI - Universidad de la Repúblicafalse
spellingShingle Statistical learning and convolutional neural networks for supervised and unsupervised restoration of satellite images in low light conditions.
Sánchez Laguardia, Manuel
Imágenes
Restauración de imágenes
Procesamiento de señales
Aprendizaje automático
Redes neuronales
CNN
Eliminación de ruido
Deconvolución
Imágenes satelitales
Aprendizaje estadístico
Aprendizaje profundo
Machine Learning
status_str acceptedVersion
title Statistical learning and convolutional neural networks for supervised and unsupervised restoration of satellite images in low light conditions.
title_full Statistical learning and convolutional neural networks for supervised and unsupervised restoration of satellite images in low light conditions.
title_fullStr Statistical learning and convolutional neural networks for supervised and unsupervised restoration of satellite images in low light conditions.
title_full_unstemmed Statistical learning and convolutional neural networks for supervised and unsupervised restoration of satellite images in low light conditions.
title_short Statistical learning and convolutional neural networks for supervised and unsupervised restoration of satellite images in low light conditions.
title_sort Statistical learning and convolutional neural networks for supervised and unsupervised restoration of satellite images in low light conditions.
topic Imágenes
Restauración de imágenes
Procesamiento de señales
Aprendizaje automático
Redes neuronales
CNN
Eliminación de ruido
Deconvolución
Imágenes satelitales
Aprendizaje estadístico
Aprendizaje profundo
Machine Learning
url https://hdl.handle.net/20.500.12008/43980