Monitoring Uruguay’s freshwaters from space: an assessment of different satellite image processing schemes for chlorophyll-a estimation
Resumen:
Uruguay's freshwater network is threatened by widespread Harmful Algal Blooms (HABs) known to be triggered by human-related stressors such as land-use change and urban/industrial effluents. Existing field-based monitoring practices are limited due to their sparse spatial and temporal coverage. A complementary approach these techniques is to utilize remotely sensed observations for estimating optically relevant water-quality (WQ) parameters, of which chlorophyll-a (Chla) is a robust proxy for HAB quantification. There is, however, a lack of information on apt country-scale image processing schemes, i.e., the best combination of Chla algorithms, atmospheric correction (AC) methods, and satellite sensors that agree best with in situ Chla across Uruguay’s inland and coastal waters. Here, we analyze the accuracy of three different combinations of ACs (SeaDAS, POLYMER, and ACOLITE) and 17 Chla models applied to the Operational Land Imager (OLI), Multispectral Instrument (MSI), and Ocean and Land Color Imager (OLCI) onboard Landsat 8, Sentinel-2A/B, Sentinel-3A/B, respectively. The performance of different processing schemes was assessed both in terms of their numerical consistency with in situ Chla and classification accuracy for discriminating low vs. high Chla with an 8 mg m−3 decision boundary. Our results show that the Mixture Density Networks (MDN) algorithm is often among the top performers. Other strong results were achieved by Gons (2 bands), Moses (3 bands) and Normalized Difference Chla Index algorithms. Regarding the atmospheric correction processors, POLYMER works better for OLCI, and SeaDAS for the OLI, while no clear distinction among AC methods was found for MSI. Furthermore, the MDN model was also among the most reliable for assigning water pixels to low or high Chla ranges. This could represent a key criterion for discriminating water bodies with good ambient conditions critical for reporting nationwide Sustainable Development Goal (SDG) 6.3.2 and other monitoring applications.
2023 | |
Atmospheric correction Chlorophyll-a algorithms Landsat-8 Sentinel-2 Sentinel-3 Sustainable development goal 6 Water quality Validation |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/42638 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
_version_ | 1807522806800318464 |
---|---|
author | Barreneche, Juan Manuel |
author2 | Guigou De Aramburu, Bruno Gallego Caballero, Federico Martín Barbieri, Andrea Smith, Brandon Fernández, Marta Fernández Ramos, Virginia Myriam Pahlevan, Nima |
author2_role | author author author author author author author |
author_facet | Barreneche, Juan Manuel Guigou De Aramburu, Bruno Gallego Caballero, Federico Martín Barbieri, Andrea Smith, Brandon Fernández, Marta Fernández Ramos, Virginia Myriam Pahlevan, Nima |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a0ebbeafb9d2ec7cbb19d7137ebc392c 8010f418ede1186e294ac5448996bd7e 71ed42ef0a0b648670f707320be37b90 2ebb21a3632dbc17587f20563bf5a138 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/42638/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/42638/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/42638/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/42638/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/42638/1/10.1016.j.rsase.2022.100891.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Barreneche Juan Manuel, Ministerio de Ambiente (Uruguay) Guigou De Aramburu Bruno, Ministerio de Ambiente (Uruguay) Gallego Caballero Federico Martín, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Ecología y Ciencias Ambientales. Barbieri Andrea, Universidad de la República (Uruguay). Facultad de Ciencias. Departamento de Geografía. Smith Brandon Fernández Marta, Ministerio de Ambiente (Uruguay) Fernández Ramos Virginia Myriam, Universidad de la República (Uruguay). Facultad de Ciencias. Departamento de Geografía. Pahlevan Nima |
dc.creator.none.fl_str_mv | Barreneche, Juan Manuel Guigou De Aramburu, Bruno Gallego Caballero, Federico Martín Barbieri, Andrea Smith, Brandon Fernández, Marta Fernández Ramos, Virginia Myriam Pahlevan, Nima |
dc.date.accessioned.none.fl_str_mv | 2024-02-26T14:32:52Z |
dc.date.available.none.fl_str_mv | 2024-02-26T14:32:52Z |
dc.date.issued.none.fl_str_mv | 2023 |
dc.description.abstract.none.fl_txt_mv | Uruguay's freshwater network is threatened by widespread Harmful Algal Blooms (HABs) known to be triggered by human-related stressors such as land-use change and urban/industrial effluents. Existing field-based monitoring practices are limited due to their sparse spatial and temporal coverage. A complementary approach these techniques is to utilize remotely sensed observations for estimating optically relevant water-quality (WQ) parameters, of which chlorophyll-a (Chla) is a robust proxy for HAB quantification. There is, however, a lack of information on apt country-scale image processing schemes, i.e., the best combination of Chla algorithms, atmospheric correction (AC) methods, and satellite sensors that agree best with in situ Chla across Uruguay’s inland and coastal waters. Here, we analyze the accuracy of three different combinations of ACs (SeaDAS, POLYMER, and ACOLITE) and 17 Chla models applied to the Operational Land Imager (OLI), Multispectral Instrument (MSI), and Ocean and Land Color Imager (OLCI) onboard Landsat 8, Sentinel-2A/B, Sentinel-3A/B, respectively. The performance of different processing schemes was assessed both in terms of their numerical consistency with in situ Chla and classification accuracy for discriminating low vs. high Chla with an 8 mg m−3 decision boundary. Our results show that the Mixture Density Networks (MDN) algorithm is often among the top performers. Other strong results were achieved by Gons (2 bands), Moses (3 bands) and Normalized Difference Chla Index algorithms. Regarding the atmospheric correction processors, POLYMER works better for OLCI, and SeaDAS for the OLI, while no clear distinction among AC methods was found for MSI. Furthermore, the MDN model was also among the most reliable for assigning water pixels to low or high Chla ranges. This could represent a key criterion for discriminating water bodies with good ambient conditions critical for reporting nationwide Sustainable Development Goal (SDG) 6.3.2 and other monitoring applications. |
dc.format.extent.es.fl_str_mv | 14 h. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Barreneche, J, Guigou De Aramburu, B, Gallego Caballero, F [y otros autores]. "Monitoring Uruguay’s freshwaters from space: An assessment of different satellite image processing schemes for chlorophyll-a estimation". Remote Sensing Applications: Society and Environment. [en línea] 2023, 29: 100891. 14 h. DOI: 10.1016/j.rsase.2022.100891. |
dc.identifier.doi.none.fl_str_mv | 10.1016/j.rsase.2022.100891 |
dc.identifier.issn.none.fl_str_mv | 2352-9385 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/42638 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | Elsevier |
dc.relation.ispartof.es.fl_str_mv | Remote Sensing Applications: Society and Environment, 2023, 29: 100891. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Atmospheric correction Chlorophyll-a algorithms Landsat-8 Sentinel-2 Sentinel-3 Sustainable development goal 6 Water quality Validation |
dc.title.none.fl_str_mv | Monitoring Uruguay’s freshwaters from space: an assessment of different satellite image processing schemes for chlorophyll-a estimation |
dc.type.es.fl_str_mv | Artículo |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Uruguay's freshwater network is threatened by widespread Harmful Algal Blooms (HABs) known to be triggered by human-related stressors such as land-use change and urban/industrial effluents. Existing field-based monitoring practices are limited due to their sparse spatial and temporal coverage. A complementary approach these techniques is to utilize remotely sensed observations for estimating optically relevant water-quality (WQ) parameters, of which chlorophyll-a (Chla) is a robust proxy for HAB quantification. There is, however, a lack of information on apt country-scale image processing schemes, i.e., the best combination of Chla algorithms, atmospheric correction (AC) methods, and satellite sensors that agree best with in situ Chla across Uruguay’s inland and coastal waters. Here, we analyze the accuracy of three different combinations of ACs (SeaDAS, POLYMER, and ACOLITE) and 17 Chla models applied to the Operational Land Imager (OLI), Multispectral Instrument (MSI), and Ocean and Land Color Imager (OLCI) onboard Landsat 8, Sentinel-2A/B, Sentinel-3A/B, respectively. The performance of different processing schemes was assessed both in terms of their numerical consistency with in situ Chla and classification accuracy for discriminating low vs. high Chla with an 8 mg m−3 decision boundary. Our results show that the Mixture Density Networks (MDN) algorithm is often among the top performers. Other strong results were achieved by Gons (2 bands), Moses (3 bands) and Normalized Difference Chla Index algorithms. Regarding the atmospheric correction processors, POLYMER works better for OLCI, and SeaDAS for the OLI, while no clear distinction among AC methods was found for MSI. Furthermore, the MDN model was also among the most reliable for assigning water pixels to low or high Chla ranges. This could represent a key criterion for discriminating water bodies with good ambient conditions critical for reporting nationwide Sustainable Development Goal (SDG) 6.3.2 and other monitoring applications. |
eu_rights_str_mv | openAccess |
format | article |
id | COLIBRI_50f1c7fd0780d8a213ef2e60b45fc4e9 |
identifier_str_mv | Barreneche, J, Guigou De Aramburu, B, Gallego Caballero, F [y otros autores]. "Monitoring Uruguay’s freshwaters from space: An assessment of different satellite image processing schemes for chlorophyll-a estimation". Remote Sensing Applications: Society and Environment. [en línea] 2023, 29: 100891. 14 h. DOI: 10.1016/j.rsase.2022.100891. 2352-9385 10.1016/j.rsase.2022.100891 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/42638 |
publishDate | 2023 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
spelling | Barreneche Juan Manuel, Ministerio de Ambiente (Uruguay)Guigou De Aramburu Bruno, Ministerio de Ambiente (Uruguay)Gallego Caballero Federico Martín, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Ecología y Ciencias Ambientales.Barbieri Andrea, Universidad de la República (Uruguay). Facultad de Ciencias. Departamento de Geografía.Smith BrandonFernández Marta, Ministerio de Ambiente (Uruguay)Fernández Ramos Virginia Myriam, Universidad de la República (Uruguay). Facultad de Ciencias. Departamento de Geografía.Pahlevan Nima2024-02-26T14:32:52Z2024-02-26T14:32:52Z2023Barreneche, J, Guigou De Aramburu, B, Gallego Caballero, F [y otros autores]. "Monitoring Uruguay’s freshwaters from space: An assessment of different satellite image processing schemes for chlorophyll-a estimation". Remote Sensing Applications: Society and Environment. [en línea] 2023, 29: 100891. 14 h. DOI: 10.1016/j.rsase.2022.100891.2352-9385https://hdl.handle.net/20.500.12008/4263810.1016/j.rsase.2022.100891Uruguay's freshwater network is threatened by widespread Harmful Algal Blooms (HABs) known to be triggered by human-related stressors such as land-use change and urban/industrial effluents. Existing field-based monitoring practices are limited due to their sparse spatial and temporal coverage. A complementary approach these techniques is to utilize remotely sensed observations for estimating optically relevant water-quality (WQ) parameters, of which chlorophyll-a (Chla) is a robust proxy for HAB quantification. There is, however, a lack of information on apt country-scale image processing schemes, i.e., the best combination of Chla algorithms, atmospheric correction (AC) methods, and satellite sensors that agree best with in situ Chla across Uruguay’s inland and coastal waters. Here, we analyze the accuracy of three different combinations of ACs (SeaDAS, POLYMER, and ACOLITE) and 17 Chla models applied to the Operational Land Imager (OLI), Multispectral Instrument (MSI), and Ocean and Land Color Imager (OLCI) onboard Landsat 8, Sentinel-2A/B, Sentinel-3A/B, respectively. The performance of different processing schemes was assessed both in terms of their numerical consistency with in situ Chla and classification accuracy for discriminating low vs. high Chla with an 8 mg m−3 decision boundary. Our results show that the Mixture Density Networks (MDN) algorithm is often among the top performers. Other strong results were achieved by Gons (2 bands), Moses (3 bands) and Normalized Difference Chla Index algorithms. Regarding the atmospheric correction processors, POLYMER works better for OLCI, and SeaDAS for the OLI, while no clear distinction among AC methods was found for MSI. Furthermore, the MDN model was also among the most reliable for assigning water pixels to low or high Chla ranges. This could represent a key criterion for discriminating water bodies with good ambient conditions critical for reporting nationwide Sustainable Development Goal (SDG) 6.3.2 and other monitoring applications.Submitted by Pintos Natalia (nataliapintosmvd@gmail.com) on 2024-02-23T16:23:55Z No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 10.1016.j.rsase.2022.100891.pdf: 7504445 bytes, checksum: 2ebb21a3632dbc17587f20563bf5a138 (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2024-02-26T12:19:18Z (GMT) No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 10.1016.j.rsase.2022.100891.pdf: 7504445 bytes, checksum: 2ebb21a3632dbc17587f20563bf5a138 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2024-02-26T14:32:52Z (GMT). No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 10.1016.j.rsase.2022.100891.pdf: 7504445 bytes, checksum: 2ebb21a3632dbc17587f20563bf5a138 (MD5) Previous issue date: 202314 h.application/pdfenengElsevierRemote Sensing Applications: Society and Environment, 2023, 29: 100891.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)Atmospheric correctionChlorophyll-a algorithmsLandsat-8Sentinel-2Sentinel-3Sustainable development goal 6Water qualityValidationMonitoring Uruguay’s freshwaters from space: an assessment of different satellite image processing schemes for chlorophyll-a estimationArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaBarreneche, Juan ManuelGuigou De Aramburu, BrunoGallego Caballero, Federico MartínBarbieri, AndreaSmith, BrandonFernández, MartaFernández Ramos, Virginia MyriamPahlevan, NimaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/42638/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/42638/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-820277http://localhost:8080/xmlui/bitstream/20.500.12008/42638/3/license_text8010f418ede1186e294ac5448996bd7eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-824251http://localhost:8080/xmlui/bitstream/20.500.12008/42638/4/license_rdf71ed42ef0a0b648670f707320be37b90MD54ORIGINAL10.1016.j.rsase.2022.100891.pdf10.1016.j.rsase.2022.100891.pdfapplication/pdf7504445http://localhost:8080/xmlui/bitstream/20.500.12008/42638/1/10.1016.j.rsase.2022.100891.pdf2ebb21a3632dbc17587f20563bf5a138MD5120.500.12008/426382024-02-26 11:32:52.396oai:colibri.udelar.edu.uy:20.500.12008/42638VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:21.431687COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Monitoring Uruguay’s freshwaters from space: an assessment of different satellite image processing schemes for chlorophyll-a estimation Barreneche, Juan Manuel Atmospheric correction Chlorophyll-a algorithms Landsat-8 Sentinel-2 Sentinel-3 Sustainable development goal 6 Water quality Validation |
status_str | publishedVersion |
title | Monitoring Uruguay’s freshwaters from space: an assessment of different satellite image processing schemes for chlorophyll-a estimation |
title_full | Monitoring Uruguay’s freshwaters from space: an assessment of different satellite image processing schemes for chlorophyll-a estimation |
title_fullStr | Monitoring Uruguay’s freshwaters from space: an assessment of different satellite image processing schemes for chlorophyll-a estimation |
title_full_unstemmed | Monitoring Uruguay’s freshwaters from space: an assessment of different satellite image processing schemes for chlorophyll-a estimation |
title_short | Monitoring Uruguay’s freshwaters from space: an assessment of different satellite image processing schemes for chlorophyll-a estimation |
title_sort | Monitoring Uruguay’s freshwaters from space: an assessment of different satellite image processing schemes for chlorophyll-a estimation |
topic | Atmospheric correction Chlorophyll-a algorithms Landsat-8 Sentinel-2 Sentinel-3 Sustainable development goal 6 Water quality Validation |
url | https://hdl.handle.net/20.500.12008/42638 |