Monitoring Uruguay’s freshwaters from space: an assessment of different satellite image processing schemes for chlorophyll-a estimation

Barreneche, Juan Manuel - Guigou De Aramburu, Bruno - Gallego Caballero, Federico Martín - Barbieri, Andrea - Smith, Brandon - Fernández, Marta - Fernández Ramos, Virginia Myriam - Pahlevan, Nima

Resumen:

Uruguay's freshwater network is threatened by widespread Harmful Algal Blooms (HABs) known to be triggered by human-related stressors such as land-use change and urban/industrial effluents. Existing field-based monitoring practices are limited due to their sparse spatial and temporal coverage. A complementary approach these techniques is to utilize remotely sensed observations for estimating optically relevant water-quality (WQ) parameters, of which chlorophyll-a (Chla) is a robust proxy for HAB quantification. There is, however, a lack of information on apt country-scale image processing schemes, i.e., the best combination of Chla algorithms, atmospheric correction (AC) methods, and satellite sensors that agree best with in situ Chla across Uruguay’s inland and coastal waters. Here, we analyze the accuracy of three different combinations of ACs (SeaDAS, POLYMER, and ACOLITE) and 17 Chla models applied to the Operational Land Imager (OLI), Multispectral Instrument (MSI), and Ocean and Land Color Imager (OLCI) onboard Landsat 8, Sentinel-2A/B, Sentinel-3A/B, respectively. The performance of different processing schemes was assessed both in terms of their numerical consistency with in situ Chla and classification accuracy for discriminating low vs. high Chla with an 8 mg m−3 decision boundary. Our results show that the Mixture Density Networks (MDN) algorithm is often among the top performers. Other strong results were achieved by Gons (2 bands), Moses (3 bands) and Normalized Difference Chla Index algorithms. Regarding the atmospheric correction processors, POLYMER works better for OLCI, and SeaDAS for the OLI, while no clear distinction among AC methods was found for MSI. Furthermore, the MDN model was also among the most reliable for assigning water pixels to low or high Chla ranges. This could represent a key criterion for discriminating water bodies with good ambient conditions critical for reporting nationwide Sustainable Development Goal (SDG) 6.3.2 and other monitoring applications.


Detalles Bibliográficos
2023
Atmospheric correction
Chlorophyll-a algorithms
Landsat-8
Sentinel-2
Sentinel-3
Sustainable development goal 6
Water quality
Validation
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/42638
Acceso abierto
Licencia Creative Commons Atribución (CC - By 4.0)
_version_ 1807522806800318464
author Barreneche, Juan Manuel
author2 Guigou De Aramburu, Bruno
Gallego Caballero, Federico Martín
Barbieri, Andrea
Smith, Brandon
Fernández, Marta
Fernández Ramos, Virginia Myriam
Pahlevan, Nima
author2_role author
author
author
author
author
author
author
author_facet Barreneche, Juan Manuel
Guigou De Aramburu, Bruno
Gallego Caballero, Federico Martín
Barbieri, Andrea
Smith, Brandon
Fernández, Marta
Fernández Ramos, Virginia Myriam
Pahlevan, Nima
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a0ebbeafb9d2ec7cbb19d7137ebc392c
8010f418ede1186e294ac5448996bd7e
71ed42ef0a0b648670f707320be37b90
2ebb21a3632dbc17587f20563bf5a138
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/42638/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/42638/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/42638/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/42638/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/42638/1/10.1016.j.rsase.2022.100891.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Barreneche Juan Manuel, Ministerio de Ambiente (Uruguay)
Guigou De Aramburu Bruno, Ministerio de Ambiente (Uruguay)
Gallego Caballero Federico Martín, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Ecología y Ciencias Ambientales.
Barbieri Andrea, Universidad de la República (Uruguay). Facultad de Ciencias. Departamento de Geografía.
Smith Brandon
Fernández Marta, Ministerio de Ambiente (Uruguay)
Fernández Ramos Virginia Myriam, Universidad de la República (Uruguay). Facultad de Ciencias. Departamento de Geografía.
Pahlevan Nima
dc.creator.none.fl_str_mv Barreneche, Juan Manuel
Guigou De Aramburu, Bruno
Gallego Caballero, Federico Martín
Barbieri, Andrea
Smith, Brandon
Fernández, Marta
Fernández Ramos, Virginia Myriam
Pahlevan, Nima
dc.date.accessioned.none.fl_str_mv 2024-02-26T14:32:52Z
dc.date.available.none.fl_str_mv 2024-02-26T14:32:52Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv Uruguay's freshwater network is threatened by widespread Harmful Algal Blooms (HABs) known to be triggered by human-related stressors such as land-use change and urban/industrial effluents. Existing field-based monitoring practices are limited due to their sparse spatial and temporal coverage. A complementary approach these techniques is to utilize remotely sensed observations for estimating optically relevant water-quality (WQ) parameters, of which chlorophyll-a (Chla) is a robust proxy for HAB quantification. There is, however, a lack of information on apt country-scale image processing schemes, i.e., the best combination of Chla algorithms, atmospheric correction (AC) methods, and satellite sensors that agree best with in situ Chla across Uruguay’s inland and coastal waters. Here, we analyze the accuracy of three different combinations of ACs (SeaDAS, POLYMER, and ACOLITE) and 17 Chla models applied to the Operational Land Imager (OLI), Multispectral Instrument (MSI), and Ocean and Land Color Imager (OLCI) onboard Landsat 8, Sentinel-2A/B, Sentinel-3A/B, respectively. The performance of different processing schemes was assessed both in terms of their numerical consistency with in situ Chla and classification accuracy for discriminating low vs. high Chla with an 8 mg m−3 decision boundary. Our results show that the Mixture Density Networks (MDN) algorithm is often among the top performers. Other strong results were achieved by Gons (2 bands), Moses (3 bands) and Normalized Difference Chla Index algorithms. Regarding the atmospheric correction processors, POLYMER works better for OLCI, and SeaDAS for the OLI, while no clear distinction among AC methods was found for MSI. Furthermore, the MDN model was also among the most reliable for assigning water pixels to low or high Chla ranges. This could represent a key criterion for discriminating water bodies with good ambient conditions critical for reporting nationwide Sustainable Development Goal (SDG) 6.3.2 and other monitoring applications.
dc.format.extent.es.fl_str_mv 14 h.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Barreneche, J, Guigou De Aramburu, B, Gallego Caballero, F [y otros autores]. "Monitoring Uruguay’s freshwaters from space: An assessment of different satellite image processing schemes for chlorophyll-a estimation". Remote Sensing Applications: Society and Environment. [en línea] 2023, 29: 100891. 14 h. DOI: 10.1016/j.rsase.2022.100891.
dc.identifier.doi.none.fl_str_mv 10.1016/j.rsase.2022.100891
dc.identifier.issn.none.fl_str_mv 2352-9385
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/42638
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Elsevier
dc.relation.ispartof.es.fl_str_mv Remote Sensing Applications: Society and Environment, 2023, 29: 100891.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Atmospheric correction
Chlorophyll-a algorithms
Landsat-8
Sentinel-2
Sentinel-3
Sustainable development goal 6
Water quality
Validation
dc.title.none.fl_str_mv Monitoring Uruguay’s freshwaters from space: an assessment of different satellite image processing schemes for chlorophyll-a estimation
dc.type.es.fl_str_mv Artículo
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Uruguay's freshwater network is threatened by widespread Harmful Algal Blooms (HABs) known to be triggered by human-related stressors such as land-use change and urban/industrial effluents. Existing field-based monitoring practices are limited due to their sparse spatial and temporal coverage. A complementary approach these techniques is to utilize remotely sensed observations for estimating optically relevant water-quality (WQ) parameters, of which chlorophyll-a (Chla) is a robust proxy for HAB quantification. There is, however, a lack of information on apt country-scale image processing schemes, i.e., the best combination of Chla algorithms, atmospheric correction (AC) methods, and satellite sensors that agree best with in situ Chla across Uruguay’s inland and coastal waters. Here, we analyze the accuracy of three different combinations of ACs (SeaDAS, POLYMER, and ACOLITE) and 17 Chla models applied to the Operational Land Imager (OLI), Multispectral Instrument (MSI), and Ocean and Land Color Imager (OLCI) onboard Landsat 8, Sentinel-2A/B, Sentinel-3A/B, respectively. The performance of different processing schemes was assessed both in terms of their numerical consistency with in situ Chla and classification accuracy for discriminating low vs. high Chla with an 8 mg m−3 decision boundary. Our results show that the Mixture Density Networks (MDN) algorithm is often among the top performers. Other strong results were achieved by Gons (2 bands), Moses (3 bands) and Normalized Difference Chla Index algorithms. Regarding the atmospheric correction processors, POLYMER works better for OLCI, and SeaDAS for the OLI, while no clear distinction among AC methods was found for MSI. Furthermore, the MDN model was also among the most reliable for assigning water pixels to low or high Chla ranges. This could represent a key criterion for discriminating water bodies with good ambient conditions critical for reporting nationwide Sustainable Development Goal (SDG) 6.3.2 and other monitoring applications.
eu_rights_str_mv openAccess
format article
id COLIBRI_50f1c7fd0780d8a213ef2e60b45fc4e9
identifier_str_mv Barreneche, J, Guigou De Aramburu, B, Gallego Caballero, F [y otros autores]. "Monitoring Uruguay’s freshwaters from space: An assessment of different satellite image processing schemes for chlorophyll-a estimation". Remote Sensing Applications: Society and Environment. [en línea] 2023, 29: 100891. 14 h. DOI: 10.1016/j.rsase.2022.100891.
2352-9385
10.1016/j.rsase.2022.100891
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/42638
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
spelling Barreneche Juan Manuel, Ministerio de Ambiente (Uruguay)Guigou De Aramburu Bruno, Ministerio de Ambiente (Uruguay)Gallego Caballero Federico Martín, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Ecología y Ciencias Ambientales.Barbieri Andrea, Universidad de la República (Uruguay). Facultad de Ciencias. Departamento de Geografía.Smith BrandonFernández Marta, Ministerio de Ambiente (Uruguay)Fernández Ramos Virginia Myriam, Universidad de la República (Uruguay). Facultad de Ciencias. Departamento de Geografía.Pahlevan Nima2024-02-26T14:32:52Z2024-02-26T14:32:52Z2023Barreneche, J, Guigou De Aramburu, B, Gallego Caballero, F [y otros autores]. "Monitoring Uruguay’s freshwaters from space: An assessment of different satellite image processing schemes for chlorophyll-a estimation". Remote Sensing Applications: Society and Environment. [en línea] 2023, 29: 100891. 14 h. DOI: 10.1016/j.rsase.2022.100891.2352-9385https://hdl.handle.net/20.500.12008/4263810.1016/j.rsase.2022.100891Uruguay's freshwater network is threatened by widespread Harmful Algal Blooms (HABs) known to be triggered by human-related stressors such as land-use change and urban/industrial effluents. Existing field-based monitoring practices are limited due to their sparse spatial and temporal coverage. A complementary approach these techniques is to utilize remotely sensed observations for estimating optically relevant water-quality (WQ) parameters, of which chlorophyll-a (Chla) is a robust proxy for HAB quantification. There is, however, a lack of information on apt country-scale image processing schemes, i.e., the best combination of Chla algorithms, atmospheric correction (AC) methods, and satellite sensors that agree best with in situ Chla across Uruguay’s inland and coastal waters. Here, we analyze the accuracy of three different combinations of ACs (SeaDAS, POLYMER, and ACOLITE) and 17 Chla models applied to the Operational Land Imager (OLI), Multispectral Instrument (MSI), and Ocean and Land Color Imager (OLCI) onboard Landsat 8, Sentinel-2A/B, Sentinel-3A/B, respectively. The performance of different processing schemes was assessed both in terms of their numerical consistency with in situ Chla and classification accuracy for discriminating low vs. high Chla with an 8 mg m−3 decision boundary. Our results show that the Mixture Density Networks (MDN) algorithm is often among the top performers. Other strong results were achieved by Gons (2 bands), Moses (3 bands) and Normalized Difference Chla Index algorithms. Regarding the atmospheric correction processors, POLYMER works better for OLCI, and SeaDAS for the OLI, while no clear distinction among AC methods was found for MSI. Furthermore, the MDN model was also among the most reliable for assigning water pixels to low or high Chla ranges. This could represent a key criterion for discriminating water bodies with good ambient conditions critical for reporting nationwide Sustainable Development Goal (SDG) 6.3.2 and other monitoring applications.Submitted by Pintos Natalia (nataliapintosmvd@gmail.com) on 2024-02-23T16:23:55Z No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 10.1016.j.rsase.2022.100891.pdf: 7504445 bytes, checksum: 2ebb21a3632dbc17587f20563bf5a138 (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2024-02-26T12:19:18Z (GMT) No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 10.1016.j.rsase.2022.100891.pdf: 7504445 bytes, checksum: 2ebb21a3632dbc17587f20563bf5a138 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2024-02-26T14:32:52Z (GMT). No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 10.1016.j.rsase.2022.100891.pdf: 7504445 bytes, checksum: 2ebb21a3632dbc17587f20563bf5a138 (MD5) Previous issue date: 202314 h.application/pdfenengElsevierRemote Sensing Applications: Society and Environment, 2023, 29: 100891.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)Atmospheric correctionChlorophyll-a algorithmsLandsat-8Sentinel-2Sentinel-3Sustainable development goal 6Water qualityValidationMonitoring Uruguay’s freshwaters from space: an assessment of different satellite image processing schemes for chlorophyll-a estimationArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaBarreneche, Juan ManuelGuigou De Aramburu, BrunoGallego Caballero, Federico MartínBarbieri, AndreaSmith, BrandonFernández, MartaFernández Ramos, Virginia MyriamPahlevan, NimaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/42638/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/42638/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-820277http://localhost:8080/xmlui/bitstream/20.500.12008/42638/3/license_text8010f418ede1186e294ac5448996bd7eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-824251http://localhost:8080/xmlui/bitstream/20.500.12008/42638/4/license_rdf71ed42ef0a0b648670f707320be37b90MD54ORIGINAL10.1016.j.rsase.2022.100891.pdf10.1016.j.rsase.2022.100891.pdfapplication/pdf7504445http://localhost:8080/xmlui/bitstream/20.500.12008/42638/1/10.1016.j.rsase.2022.100891.pdf2ebb21a3632dbc17587f20563bf5a138MD5120.500.12008/426382024-02-26 11:32:52.396oai:colibri.udelar.edu.uy:20.500.12008/42638VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:21.431687COLIBRI - Universidad de la Repúblicafalse
spellingShingle Monitoring Uruguay’s freshwaters from space: an assessment of different satellite image processing schemes for chlorophyll-a estimation
Barreneche, Juan Manuel
Atmospheric correction
Chlorophyll-a algorithms
Landsat-8
Sentinel-2
Sentinel-3
Sustainable development goal 6
Water quality
Validation
status_str publishedVersion
title Monitoring Uruguay’s freshwaters from space: an assessment of different satellite image processing schemes for chlorophyll-a estimation
title_full Monitoring Uruguay’s freshwaters from space: an assessment of different satellite image processing schemes for chlorophyll-a estimation
title_fullStr Monitoring Uruguay’s freshwaters from space: an assessment of different satellite image processing schemes for chlorophyll-a estimation
title_full_unstemmed Monitoring Uruguay’s freshwaters from space: an assessment of different satellite image processing schemes for chlorophyll-a estimation
title_short Monitoring Uruguay’s freshwaters from space: an assessment of different satellite image processing schemes for chlorophyll-a estimation
title_sort Monitoring Uruguay’s freshwaters from space: an assessment of different satellite image processing schemes for chlorophyll-a estimation
topic Atmospheric correction
Chlorophyll-a algorithms
Landsat-8
Sentinel-2
Sentinel-3
Sustainable development goal 6
Water quality
Validation
url https://hdl.handle.net/20.500.12008/42638