An active regions approach for the segmentation of 3D biological tissue
Resumen:
Some of the most successful algorithms for the automated segmentation of images use an Active Regions approach, where a curve is evolved so as to maximize the disparity of its interior and exterior. But these techniques require the manual selection of several parameters, which make impractical the work with long image sequences or with a very dissimilar set of sequences. Unfortunately this is precisely the case with 3D biological image sequences. In this work we improve on previous Active Regions algorithms in two aspects: by introducing a way to compute and update the optimum weights for the different channels involved (color, texture, etc.) and by estimating if the moving curve has lost any object so as to launch a re-initialization step. Our method is shown to outperform previous approaches. Several examples of biological image sequences, quite long and different among themselves, are presented.
2005 | |
Biological tissues Image segmentation Biology computing PROCESAMIENTO de SEÑALES |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/21171 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
Resultados similares
-
An active regions approach for the segmentation of biological 3D tissue
Autor(es):: Cardelino, Juan
Fecha de publicación:: (2005) -
Morphing active contours : a geometric approach to topology-independent image segmentation and tracking
Autor(es):: Bertalmío, Marcelo
Fecha de publicación:: (1998) -
A contrario selection of optimal partitions for image segmentation
Autor(es):: Cardelino, Juan
Fecha de publicación:: (2013) -
A new approach for 3D segmentation of cellular tomograms obtained using three-dimensional electron microscopy
Autor(es):: Bartesaghi, Alberto
Fecha de publicación:: (2004) -
Region based segmentation using the tree of shapes
Autor(es):: Cardelino, Juan
Fecha de publicación:: (2006)