The bifurcation set as a topological invariant for one-dimensional dynamics
Resumen:
For a continuous map on the unit interval or circle, we define the bifurcation set to be the collection of those interval holes whose surviving set is sensitive to arbitrarily small changes of (some of) their endpoints. By assuming a global perspective and focusing on the geometric and topological properties of this collection rather than the surviving sets of individual holes, we obtain a novel topological invariant for one-dimensional dynamics. We provide a detailed description of this invariant in the realm of transitive maps and observe that it carries fundamental dynamical information. In particular, for transitive non-minimal piecewise monotone maps, the bifurcation set encodes the topological entropy and strongly depends on the behavior of the critical points.
2021 | |
One-dimensional dynamics Open systems Topological invariants Bifurcation set/locus |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/34220 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
Resultados similares
-
Topology of leaves for minimal laminations by hyperbolic surfaces
Autor(es):: Álvarez, Sebastien
Fecha de publicación:: (2022) -
Topology of leaves for minimal laminations by hyperbolic surfaces
Autor(es):: Alvarez, Sebastién
Fecha de publicación:: (2022) -
On estimation of biconvex sets
Autor(es):: Cholaquidis, Alejandro
Fecha de publicación:: (2020) -
Managing devices of a one-to-one computing educational program using an IoT infrastructure
Autor(es):: Osimani, Felipe
Fecha de publicación:: (2019) -
Expansive partially hyperbolic diffeomorphisms with one-dimensional center
Autor(es):: Sambarino, Martín
Fecha de publicación:: (2024)