NTL detection : Overview of classic and DNN-based approaches on a labeled dataset of 311k customers.
Resumen:
Non-technical losses (NLT) constitute a significant problem for developing countries and electric companies. The machine learning community has offered numerous countermeasures to mitigate the problem. Yet, one of the main bottlenecks consists of collecting and accessing labeled data to evaluate and compare the validity of proposed solutions. In collaboration with the Uruguayan power generation and distribution company UTE, we collected data and inspected 311k costumers, creating one of the world’s largest fully labeled datasets. In the present paper, we use this massive amount of information in two ways. First, we revisit previous work, compare, and validate earlier findings tested in much smaller and less diverse databases. Second, we compare and analyze novel deep neural network algorithms, which have been more recently adopted for preventing NLT. Our main discoveries are: (i) that above 80k training examples, the performance gain of adding more training data is marginal; (ii) if modern classifiers are adopted, handcrafting features from the consumption signal is unnecessary; (iii) complementary customer information as well as the geo-localization are relevant features, and complement the consumption signal; and (iv) adversarial attack ideas can be exploited to understand which are the main patterns that characterize fraudulent activities and typical consumption profiles.
2021 | |
Training Training data Companies Switches Performance gain Smart meters Smart grids Non-technical losses Electricity theft Automatic fraud detection |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/26892 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522896819519488 |
---|---|
author | Massaferro Saquieres, Pablo |
author2 | Di Martino, Matías Fernández, Alicia |
author2_role | author author |
author_facet | Massaferro Saquieres, Pablo Di Martino, Matías Fernández, Alicia |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 36c32e9c6da50e6d55578c16944ef7f6 1996b8461bc290aef6a27d78c67b6b52 ca6baa3f1fd9afdf98b7469b5de74045 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/26892/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/26892/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/26892/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/26892/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/26892/1/MDF21.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Massaferro Saquieres Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería. Di Martino Matías, Duke University, North Carolina, USA. Fernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.creator.none.fl_str_mv | Massaferro Saquieres, Pablo Di Martino, Matías Fernández, Alicia |
dc.date.accessioned.none.fl_str_mv | 2021-03-23T12:37:08Z |
dc.date.available.none.fl_str_mv | 2021-03-23T12:37:08Z |
dc.date.issued.none.fl_str_mv | 2021 |
dc.description.abstract.none.fl_txt_mv | Non-technical losses (NLT) constitute a significant problem for developing countries and electric companies. The machine learning community has offered numerous countermeasures to mitigate the problem. Yet, one of the main bottlenecks consists of collecting and accessing labeled data to evaluate and compare the validity of proposed solutions. In collaboration with the Uruguayan power generation and distribution company UTE, we collected data and inspected 311k costumers, creating one of the world’s largest fully labeled datasets. In the present paper, we use this massive amount of information in two ways. First, we revisit previous work, compare, and validate earlier findings tested in much smaller and less diverse databases. Second, we compare and analyze novel deep neural network algorithms, which have been more recently adopted for preventing NLT. Our main discoveries are: (i) that above 80k training examples, the performance gain of adding more training data is marginal; (ii) if modern classifiers are adopted, handcrafting features from the consumption signal is unnecessary; (iii) complementary customer information as well as the geo-localization are relevant features, and complement the consumption signal; and (iv) adversarial attack ideas can be exploited to understand which are the main patterns that characterize fraudulent activities and typical consumption profiles. |
dc.format.extent.es.fl_str_mv | 5 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Massaferro Saquieres, P., Di Martino, M. y Fernández, A. NTL detection : Overview of classic and DNN-based approaches on a labeled dataset of 311k customers [en línea]. EN : 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16-18 feb., 2021. DOI: 10.1109/ISGT49243.2021.9372164 |
dc.identifier.doi.none.fl_str_mv | 10.1109/ISGT49243.2021.9372164 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/26892 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | IEEE |
dc.relation.ispartof.es.fl_str_mv | 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16-18 feb. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Training Training data Companies Switches Performance gain Smart meters Smart grids Non-technical losses Electricity theft Automatic fraud detection |
dc.title.none.fl_str_mv | NTL detection : Overview of classic and DNN-based approaches on a labeled dataset of 311k customers. |
dc.type.es.fl_str_mv | Ponencia |
dc.type.none.fl_str_mv | info:eu-repo/semantics/conferenceObject |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Non-technical losses (NLT) constitute a significant problem for developing countries and electric companies. The machine learning community has offered numerous countermeasures to mitigate the problem. Yet, one of the main bottlenecks consists of collecting and accessing labeled data to evaluate and compare the validity of proposed solutions. In collaboration with the Uruguayan power generation and distribution company UTE, we collected data and inspected 311k costumers, creating one of the world’s largest fully labeled datasets. In the present paper, we use this massive amount of information in two ways. First, we revisit previous work, compare, and validate earlier findings tested in much smaller and less diverse databases. Second, we compare and analyze novel deep neural network algorithms, which have been more recently adopted for preventing NLT. Our main discoveries are: (i) that above 80k training examples, the performance gain of adding more training data is marginal; (ii) if modern classifiers are adopted, handcrafting features from the consumption signal is unnecessary; (iii) complementary customer information as well as the geo-localization are relevant features, and complement the consumption signal; and (iv) adversarial attack ideas can be exploited to understand which are the main patterns that characterize fraudulent activities and typical consumption profiles. |
eu_rights_str_mv | openAccess |
format | conferenceObject |
id | COLIBRI_4af1f2a6124d664c756f3f411be2550b |
identifier_str_mv | Massaferro Saquieres, P., Di Martino, M. y Fernández, A. NTL detection : Overview of classic and DNN-based approaches on a labeled dataset of 311k customers [en línea]. EN : 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16-18 feb., 2021. DOI: 10.1109/ISGT49243.2021.9372164 10.1109/ISGT49243.2021.9372164 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/26892 |
publishDate | 2021 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Massaferro Saquieres Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.Di Martino Matías, Duke University, North Carolina, USA.Fernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería.2021-03-23T12:37:08Z2021-03-23T12:37:08Z2021Massaferro Saquieres, P., Di Martino, M. y Fernández, A. NTL detection : Overview of classic and DNN-based approaches on a labeled dataset of 311k customers [en línea]. EN : 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16-18 feb., 2021. DOI: 10.1109/ISGT49243.2021.9372164https://hdl.handle.net/20.500.12008/2689210.1109/ISGT49243.2021.9372164Non-technical losses (NLT) constitute a significant problem for developing countries and electric companies. The machine learning community has offered numerous countermeasures to mitigate the problem. Yet, one of the main bottlenecks consists of collecting and accessing labeled data to evaluate and compare the validity of proposed solutions. In collaboration with the Uruguayan power generation and distribution company UTE, we collected data and inspected 311k costumers, creating one of the world’s largest fully labeled datasets. In the present paper, we use this massive amount of information in two ways. First, we revisit previous work, compare, and validate earlier findings tested in much smaller and less diverse databases. Second, we compare and analyze novel deep neural network algorithms, which have been more recently adopted for preventing NLT. Our main discoveries are: (i) that above 80k training examples, the performance gain of adding more training data is marginal; (ii) if modern classifiers are adopted, handcrafting features from the consumption signal is unnecessary; (iii) complementary customer information as well as the geo-localization are relevant features, and complement the consumption signal; and (iv) adversarial attack ideas can be exploited to understand which are the main patterns that characterize fraudulent activities and typical consumption profiles.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2021-03-22T18:38:59Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MDF21.pdf: 1906190 bytes, checksum: ca6baa3f1fd9afdf98b7469b5de74045 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2021-03-22T21:15:06Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MDF21.pdf: 1906190 bytes, checksum: ca6baa3f1fd9afdf98b7469b5de74045 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@fic.edu.uy) on 2021-03-23T12:37:08Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MDF21.pdf: 1906190 bytes, checksum: ca6baa3f1fd9afdf98b7469b5de74045 (MD5) Previous issue date: 20215 p.application/pdfenengIEEE2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16-18 feb.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)TrainingTraining dataCompaniesSwitchesPerformance gainSmart metersSmart gridsNon-technical lossesElectricity theftAutomatic fraud detectionNTL detection : Overview of classic and DNN-based approaches on a labeled dataset of 311k customers.Ponenciainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaMassaferro Saquieres, PabloDi Martino, MatíasFernández, AliciaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/26892/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/26892/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/26892/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/26892/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALMDF21.pdfMDF21.pdfapplication/pdf1906190http://localhost:8080/xmlui/bitstream/20.500.12008/26892/1/MDF21.pdfca6baa3f1fd9afdf98b7469b5de74045MD5120.500.12008/268922021-03-23 09:37:08.121oai:colibri.udelar.edu.uy:20.500.12008/26892VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:09.588223COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | NTL detection : Overview of classic and DNN-based approaches on a labeled dataset of 311k customers. Massaferro Saquieres, Pablo Training Training data Companies Switches Performance gain Smart meters Smart grids Non-technical losses Electricity theft Automatic fraud detection |
status_str | publishedVersion |
title | NTL detection : Overview of classic and DNN-based approaches on a labeled dataset of 311k customers. |
title_full | NTL detection : Overview of classic and DNN-based approaches on a labeled dataset of 311k customers. |
title_fullStr | NTL detection : Overview of classic and DNN-based approaches on a labeled dataset of 311k customers. |
title_full_unstemmed | NTL detection : Overview of classic and DNN-based approaches on a labeled dataset of 311k customers. |
title_short | NTL detection : Overview of classic and DNN-based approaches on a labeled dataset of 311k customers. |
title_sort | NTL detection : Overview of classic and DNN-based approaches on a labeled dataset of 311k customers. |
topic | Training Training data Companies Switches Performance gain Smart meters Smart grids Non-technical losses Electricity theft Automatic fraud detection |
url | https://hdl.handle.net/20.500.12008/26892 |