Tree models :algorithms and information theoretic properties

Martín, Alvaro

Supervisor(es): Seroussi, Gadiel - Viola, Alfredo

Resumen:

La tesis estudia propiedades fundamentales y algoritmos relacionados con modelos árbol. Estos modelos requieren una cantidad relativamente pequeña de parámetros para representar fuentes de memoria finita (Markov) sobre alfabetos finitos, cuando el largo de la cantidad de símbolos pasados necesaria para determinar la distribución de probabilidad condicional del siguiente símbolo no es fija, sino que depende del contexto en el cual ocurre el símbolo. La tesis define estructuras combinatorias como árboles de contexto generalizados y sus clausuras FSM (del inglés finite state machine), y aplica estas estructuras para describir la primera implementación en tiempo lineal de codificación y decodificación de la versión semi-predictiva del algoritmo Context, un esquema doblemente universal que alcanza una tasa de convergencia óptima a la entropía en la clases de modelos árbol. La tesis analiza luego clases de tipo para modelos árbol, extendiendo el método de tipos previamente estudiado para modelos FSM. Se deriva una fórmula exacta para la cardinalidad de una clase de tipo para una secuencia de largo n dada, así como una estimación asintótica del valor esperado del logaritmo del tamaño de una clase de tipo, y una estimación asintótica del número de clases de tipo diferentes para secuencias de un largo dado. Estos resultados asintóticos se derivan con la ayuda del nuevo concepto de extensión canónica mínima de un árbol de contexto, un objeto combinatorio fundamental que se encuentra entre el árbol original y su clausura FSM. Como aplicaciones de las nuevas propiedades descubiertas para modelos árbol, se presentan algoritmos de codificación enumerativa doblemente universales y esquemas de simulación universal para secuencias individuales. Finalmente, la tesis presenta algunos problemas abiertos y direcciones para investigaciones futuras en esta área.


Detalles Bibliográficos
2009
Algoritmos
Tree Models
Inglés
Universidad de la República
COLIBRI
http://hdl.handle.net/20.500.12008/2947
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
_version_ 1807523180422627328
author Martín, Alvaro
author_facet Martín, Alvaro
author_role author
bitstream.checksum.fl_str_mv 528b6a3c8c7d0c6e28129d576e989607
9833653f73f7853880c94a6fead477b1
4afdbb8c545fd630ea7db775da747b2f
9da0b6dfac957114c6a7714714b86306
0ed0ce3aea670ccf655c67e535359a5e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/2947/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/2947/2/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/2947/3/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/2947/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/2947/1/tesisd-martin.pdf
collection COLIBRI
dc.creator.advisor.none.fl_str_mv Seroussi, Gadiel
Viola, Alfredo
dc.creator.none.fl_str_mv Martín, Alvaro
dc.date.accessioned.none.fl_str_mv 2014-11-24T22:36:14Z
dc.date.available.none.fl_str_mv 2014-11-24T22:36:14Z
dc.date.issued.es.fl_str_mv 2009
dc.date.submitted.es.fl_str_mv 20141202
dc.description.abstract.none.fl_txt_mv La tesis estudia propiedades fundamentales y algoritmos relacionados con modelos árbol. Estos modelos requieren una cantidad relativamente pequeña de parámetros para representar fuentes de memoria finita (Markov) sobre alfabetos finitos, cuando el largo de la cantidad de símbolos pasados necesaria para determinar la distribución de probabilidad condicional del siguiente símbolo no es fija, sino que depende del contexto en el cual ocurre el símbolo. La tesis define estructuras combinatorias como árboles de contexto generalizados y sus clausuras FSM (del inglés finite state machine), y aplica estas estructuras para describir la primera implementación en tiempo lineal de codificación y decodificación de la versión semi-predictiva del algoritmo Context, un esquema doblemente universal que alcanza una tasa de convergencia óptima a la entropía en la clases de modelos árbol. La tesis analiza luego clases de tipo para modelos árbol, extendiendo el método de tipos previamente estudiado para modelos FSM. Se deriva una fórmula exacta para la cardinalidad de una clase de tipo para una secuencia de largo n dada, así como una estimación asintótica del valor esperado del logaritmo del tamaño de una clase de tipo, y una estimación asintótica del número de clases de tipo diferentes para secuencias de un largo dado. Estos resultados asintóticos se derivan con la ayuda del nuevo concepto de extensión canónica mínima de un árbol de contexto, un objeto combinatorio fundamental que se encuentra entre el árbol original y su clausura FSM. Como aplicaciones de las nuevas propiedades descubiertas para modelos árbol, se presentan algoritmos de codificación enumerativa doblemente universales y esquemas de simulación universal para secuencias individuales. Finalmente, la tesis presenta algunos problemas abiertos y direcciones para investigaciones futuras en esta área.
dc.format.extent.es.fl_str_mv 231 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv MARTÍN, A. "Tree models :algorithms and information theoretic properties". Tesis de doctorado, Universidad de la República (Uruguay). Facultad de Ingeniería. Instituto de Computación – PEDECIBA, 2009.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12008/2947
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv UR. FI-INCO,
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Algoritmos
Tree Models
dc.title.none.fl_str_mv Tree models :algorithms and information theoretic properties
dc.type.es.fl_str_mv Tesis de doctorado
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description La tesis estudia propiedades fundamentales y algoritmos relacionados con modelos árbol. Estos modelos requieren una cantidad relativamente pequeña de parámetros para representar fuentes de memoria finita (Markov) sobre alfabetos finitos, cuando el largo de la cantidad de símbolos pasados necesaria para determinar la distribución de probabilidad condicional del siguiente símbolo no es fija, sino que depende del contexto en el cual ocurre el símbolo. La tesis define estructuras combinatorias como árboles de contexto generalizados y sus clausuras FSM (del inglés finite state machine), y aplica estas estructuras para describir la primera implementación en tiempo lineal de codificación y decodificación de la versión semi-predictiva del algoritmo Context, un esquema doblemente universal que alcanza una tasa de convergencia óptima a la entropía en la clases de modelos árbol. La tesis analiza luego clases de tipo para modelos árbol, extendiendo el método de tipos previamente estudiado para modelos FSM. Se deriva una fórmula exacta para la cardinalidad de una clase de tipo para una secuencia de largo n dada, así como una estimación asintótica del valor esperado del logaritmo del tamaño de una clase de tipo, y una estimación asintótica del número de clases de tipo diferentes para secuencias de un largo dado. Estos resultados asintóticos se derivan con la ayuda del nuevo concepto de extensión canónica mínima de un árbol de contexto, un objeto combinatorio fundamental que se encuentra entre el árbol original y su clausura FSM. Como aplicaciones de las nuevas propiedades descubiertas para modelos árbol, se presentan algoritmos de codificación enumerativa doblemente universales y esquemas de simulación universal para secuencias individuales. Finalmente, la tesis presenta algunos problemas abiertos y direcciones para investigaciones futuras en esta área.
eu_rights_str_mv openAccess
format doctoralThesis
id COLIBRI_46c26fa81c4c5f1114280412a380d239
identifier_str_mv MARTÍN, A. "Tree models :algorithms and information theoretic properties". Tesis de doctorado, Universidad de la República (Uruguay). Facultad de Ingeniería. Instituto de Computación – PEDECIBA, 2009.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/2947
publishDate 2009
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
spelling 2014-11-24T22:36:14Z2014-11-24T22:36:14Z200920141202MARTÍN, A. "Tree models :algorithms and information theoretic properties". Tesis de doctorado, Universidad de la República (Uruguay). Facultad de Ingeniería. Instituto de Computación – PEDECIBA, 2009.http://hdl.handle.net/20.500.12008/2947La tesis estudia propiedades fundamentales y algoritmos relacionados con modelos árbol. Estos modelos requieren una cantidad relativamente pequeña de parámetros para representar fuentes de memoria finita (Markov) sobre alfabetos finitos, cuando el largo de la cantidad de símbolos pasados necesaria para determinar la distribución de probabilidad condicional del siguiente símbolo no es fija, sino que depende del contexto en el cual ocurre el símbolo. La tesis define estructuras combinatorias como árboles de contexto generalizados y sus clausuras FSM (del inglés finite state machine), y aplica estas estructuras para describir la primera implementación en tiempo lineal de codificación y decodificación de la versión semi-predictiva del algoritmo Context, un esquema doblemente universal que alcanza una tasa de convergencia óptima a la entropía en la clases de modelos árbol. La tesis analiza luego clases de tipo para modelos árbol, extendiendo el método de tipos previamente estudiado para modelos FSM. Se deriva una fórmula exacta para la cardinalidad de una clase de tipo para una secuencia de largo n dada, así como una estimación asintótica del valor esperado del logaritmo del tamaño de una clase de tipo, y una estimación asintótica del número de clases de tipo diferentes para secuencias de un largo dado. Estos resultados asintóticos se derivan con la ayuda del nuevo concepto de extensión canónica mínima de un árbol de contexto, un objeto combinatorio fundamental que se encuentra entre el árbol original y su clausura FSM. Como aplicaciones de las nuevas propiedades descubiertas para modelos árbol, se presentan algoritmos de codificación enumerativa doblemente universales y esquemas de simulación universal para secuencias individuales. Finalmente, la tesis presenta algunos problemas abiertos y direcciones para investigaciones futuras en esta área.Made available in DSpace on 2014-11-24T22:36:14Z (GMT). No. of bitstreams: 5 tesisd-martin.pdf: 2471957 bytes, checksum: 0ed0ce3aea670ccf655c67e535359a5e (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4244 bytes, checksum: 528b6a3c8c7d0c6e28129d576e989607 (MD5) Previous issue date: 2009231 p.application/pdfenengUR. FI-INCO,Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)AlgoritmosTree ModelsTree models :algorithms and information theoretic propertiesTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaMartín, AlvaroSeroussi, GadielViola, AlfredoUniversidad de la República (Uruguay). Facultad de Ingeniería. Instituto de Computación – PEDECIBADoctor en InformáticaLICENSElicense.txttext/plain4244http://localhost:8080/xmlui/bitstream/20.500.12008/2947/5/license.txt528b6a3c8c7d0c6e28129d576e989607MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/2947/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/2947/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/2947/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALtesisd-martin.pdfapplication/pdf2471957http://localhost:8080/xmlui/bitstream/20.500.12008/2947/1/tesisd-martin.pdf0ed0ce3aea670ccf655c67e535359a5eMD5120.500.12008/29472014-11-24 20:36:14.934oai:colibri.udelar.edu.uy:20.500.12008/2947VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMNCg0KDQpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIA0KDQpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdO+/vXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGRlcO+/vXNpdG8gZW4gQ09MSUJSSSwgbGEgVW5pdmVyc2lkYWQgZGUgUmVw77+9YmxpY2EgcHJvY2VkZXLvv70gYTogIA0KDQphKSBhcmNoaXZhciBt77+9cyBkZSB1bmEgY29waWEgZGUgbGEgb2JyYSBlbiBsb3Mgc2Vydmlkb3JlcyBkZSBsYSBVbml2ZXJzaWRhZCBhIGxvcyBlZmVjdG9zIGRlIGdhcmFudGl6YXIgYWNjZXNvLCBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNp77+9bg0KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nvv71uIHkgYWNjZXNpYmlsaWRhZCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8uDQpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuDQoNCg0KRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4NCg0KRWwgYXV0b3IgYXNlZ3VyYSBxdWUgbGEgb2JyYSBubyBpbmZyaWdlIG5pbmfvv71uIGRlcmVjaG8gc29icmUgdGVyY2Vyb3MsIHlhIHNlYSBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3Ryby4NCg0KRWwgYXV0b3IgZ2FyYW50aXphIHF1ZSBzaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgY3VhbGVzIG5vIHRpZW5lIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgeSBxdWUgZXNlIG1hdGVyaWFsIGN1eW9zIGRlcmVjaG9zIHNvbiBkZSB0ZXJjZXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZGVwb3NpdGFkbyBlbiBlbCBSZXBvc2l0b3Jpby4NCg0KRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuDQoNCkVsIGF1dG9yIHNlcu+/vSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcu+/vSByZXNwb25zYWJsZSBwb3IgbGFzIGV2ZW50dWFsZXMgdmlvbGFjaW9uZXMgYWwgZGVyZWNobyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZW4gcXVlIHB1ZWRhIGluY3VycmlyIGVsIGF1dG9yLg0KDQpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNp77+9biBkZSBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGxhIFVERUxBUiAgYWRvcHRhcu+/vSB0b2RhcyBsYXMgbWVkaWRhcyBuZWNlc2FyaWFzIHBhcmEgZXZpdGFyIGxhIGNvbnRpbnVhY2nvv71uIGRlIGRpY2hhIGluZnJhY2Np77+9biwgbGFzIHF1ZSBwb2Ry77+9biBpbmNsdWlyIGVsIHJldGlybyBkZWwgYWNjZXNvIGEgbG9zIGNvbnRlbmlkb3MgeS9vIG1ldGFkYXRvcyBkZWwgZG9jdW1lbnRvIHJlc3BlY3Rpdm8uDQoNCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoNCg0KDQpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLg0KDQpBdHJpYnVjae+/vW4g77+9IENvbXBhcnRpciBJZ3VhbCAoQ0MgLSBCeS1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgZGViZSBoYWNlcnNlIG1lZGlhbnRlIHVuYSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuDQoNCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuDQoNCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IENvbXBhcnRpciBJZ3VhbCAoQ0Mg77+9IEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjae+/vW4gZGUgbGFzIG9icmFzIGRlcml2YWRhcyBzZSBoYWdhIG1lZGlhbnRlIGxpY2VuY2lhIGlk77+9bnRpY2EgYSBsYSBkZSBsYSBvYnJhIG9yaWdpbmFsLCByZWNvbm9jaWVuZG8gYSBsb3MgYXV0b3Jlcy4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IFNpbiBEZXJpdmFkYXMgKENDIC0gQnktTkMtTkQpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSwgcGVybyBubyBzZSBwZXJtaXRlIGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzIHkgbm8gc2UgcGVybWl0ZSB1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBkZWJpZW5kbyByZWNvbm9jZXIgYWwgYXV0b3IuDQoNCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4NCg0KQ3VhbmRvIHNlIHNlbGVjY2lvbmUgdW5hIGxpY2VuY2lhIHF1ZSBoYWJpbGl0ZSB1c29zIGNvbWVyY2lhbGVzLCBlbCBkZXDvv71zaXRvIGRlYmVy77+9IHNlciBhY29tcGHvv71hZG8gZGVsIGF2YWwgZGVsIGplcmFyY2Egbe+/vXhpbW8gZGVsIFNlcnZpY2lvIGNvcnJlc3BvbmRpZW50ZS4NCg0KDQoNCg0KDQoNCg0KDQo=Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:21.872530COLIBRI - Universidad de la Repúblicafalse
spellingShingle Tree models :algorithms and information theoretic properties
Martín, Alvaro
Algoritmos
Tree Models
status_str acceptedVersion
title Tree models :algorithms and information theoretic properties
title_full Tree models :algorithms and information theoretic properties
title_fullStr Tree models :algorithms and information theoretic properties
title_full_unstemmed Tree models :algorithms and information theoretic properties
title_short Tree models :algorithms and information theoretic properties
title_sort Tree models :algorithms and information theoretic properties
topic Algoritmos
Tree Models
url http://hdl.handle.net/20.500.12008/2947