Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction

Fariello, Maria Inés - Arboleya, Lucía - Belzarena, Diego - De Los Santos, Leonardo - Elenter, Juan - Etchebarne, Guillermo - Hounie, Ignacio - Ciappesoni, Gabriel - Navajas, Elly - Lecumberry, Federico

Resumen:

Genome enabled prediction of complex traits aims to predict a measurable characteristic of an organism using their genetic information. In the present work we address diverse traits and organisms including Yeast growth, Wheat yield, Jersey bull fertility and various Holstein cattle milk-related traits. We benchmark several popular Machine Learning models: Bayesian and penalized linear regressions, kernel methods, and Decision Tree ensembles. Through exhaustive hyperparameter tuning we outperform state-of-the-art results in most datasets. We also evaluate two codification techniques for input data and perform ablation studies to assess robustness to genetic markers - i.e input features- elimination. We also explore different Deep Learning architectures for this task. We propose and evaluate Convolutional Neural Network (CNN) architectures, showing that using residual connections improves performance but that in some cases Fully Connected Networks outperform CNNs. We link this to the fact that absolute positions are relevant in genomes, and thus, CNN’s translational equivariance may not be an adequate inductive bias for tackling this problem. We evaluate Graph Neural Network (GNN) architectures by formulating trait prediction as a node regression problem on a population graph, where each node represents an individual, and edges association between their genetic information. We evaluate the transferability of these graphical models and find that the extent to which they exploit neighborhood information is limited. By combining CNN and GNN architectures, we could outperform all other models for predicting milk yield in Holstein cattle.The methods that are based on neural networks can be computationally demanding when used on high density chips or sequence data, even more when fully connected layers are used. To overcome this problem, we propose to obtain a new representation of the input vector by using the intermediate representation (code) of an Autoencoder (AE). Currently we are evaluating the performance benchmarks. Another common issue when using these databases is the missing data or the combination of chips of different SNP's numbers. Again, we propose to use AE for imputing the missing values. One of the main focuses of this work was to explore the feasibility of employing modern deep learning architectures in Genomic Prediction. In this regard, it was possible to train highly over-parameterized architectures and still obtain good generalization. For some datasets and traits, these models outperform all others. However, this did not hold for all the models, traits and datasets studied. Besides, whether the gains in performance outweigh the increase in model size and thus its training and inference computational cost, and lack of interpretability, calls for further discussion.


Detalles Bibliográficos
2023
Este trabajo fue parcialmente financiado por la Universidad de la República y el proyecto ANII FDA 1_2018_1_154364
Predicción genómica
Deep learning
Signal processing
Inglés
Universidad de la República
COLIBRI
https://www.intlpag.org/30/
https://pag.confex.com/pag/30/poster/papers/viewonly.cgi?password=552823&username=49902
https://hdl.handle.net/20.500.12008/36884
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522932713324544
author Fariello, Maria Inés
author2 Arboleya, Lucía
Belzarena, Diego
De Los Santos, Leonardo
Elenter, Juan
Etchebarne, Guillermo
Hounie, Ignacio
Ciappesoni, Gabriel
Navajas, Elly
Lecumberry, Federico
author2_role author
author
author
author
author
author
author
author
author
author_facet Fariello, Maria Inés
Arboleya, Lucía
Belzarena, Diego
De Los Santos, Leonardo
Elenter, Juan
Etchebarne, Guillermo
Hounie, Ignacio
Ciappesoni, Gabriel
Navajas, Elly
Lecumberry, Federico
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
e8c30e04e865334cac2bfcba70aad8cb
1996b8461bc290aef6a27d78c67b6b52
f105fe385f476611bc710ef31311ee36
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/36884/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/36884/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/36884/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/36884/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/36884/1/FABDEEHCNL23.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Fariello Maria Inés, Universidad de la República (Uruguay). Facultad de Ingeniería.
Arboleya Lucía, Universidad de la República (Uruguay). Facultad de Ingeniería.
Belzarena Diego, Universidad de la República (Uruguay). Facultad de Ingeniería.
De Los Santos Leonardo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Elenter Juan, Universidad de la República (Uruguay). Facultad de Ingeniería.
Etchebarne Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Hounie Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.
Ciappesoni Gabriel, Instituto Nacional de Investigación Agropecuaria, Las Brujas, Uruguay
Navajas Elly, Instituto Nacional de Investigación Agropecuaria, Las Brujas, Uruguay
Lecumberry Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.none.fl_str_mv Fariello, Maria Inés
Arboleya, Lucía
Belzarena, Diego
De Los Santos, Leonardo
Elenter, Juan
Etchebarne, Guillermo
Hounie, Ignacio
Ciappesoni, Gabriel
Navajas, Elly
Lecumberry, Federico
dc.date.accessioned.none.fl_str_mv 2023-04-28T13:33:00Z
dc.date.available.none.fl_str_mv 2023-04-28T13:33:00Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv Genome enabled prediction of complex traits aims to predict a measurable characteristic of an organism using their genetic information. In the present work we address diverse traits and organisms including Yeast growth, Wheat yield, Jersey bull fertility and various Holstein cattle milk-related traits. We benchmark several popular Machine Learning models: Bayesian and penalized linear regressions, kernel methods, and Decision Tree ensembles. Through exhaustive hyperparameter tuning we outperform state-of-the-art results in most datasets. We also evaluate two codification techniques for input data and perform ablation studies to assess robustness to genetic markers - i.e input features- elimination. We also explore different Deep Learning architectures for this task. We propose and evaluate Convolutional Neural Network (CNN) architectures, showing that using residual connections improves performance but that in some cases Fully Connected Networks outperform CNNs. We link this to the fact that absolute positions are relevant in genomes, and thus, CNN’s translational equivariance may not be an adequate inductive bias for tackling this problem. We evaluate Graph Neural Network (GNN) architectures by formulating trait prediction as a node regression problem on a population graph, where each node represents an individual, and edges association between their genetic information. We evaluate the transferability of these graphical models and find that the extent to which they exploit neighborhood information is limited. By combining CNN and GNN architectures, we could outperform all other models for predicting milk yield in Holstein cattle.The methods that are based on neural networks can be computationally demanding when used on high density chips or sequence data, even more when fully connected layers are used. To overcome this problem, we propose to obtain a new representation of the input vector by using the intermediate representation (code) of an Autoencoder (AE). Currently we are evaluating the performance benchmarks. Another common issue when using these databases is the missing data or the combination of chips of different SNP's numbers. Again, we propose to use AE for imputing the missing values. One of the main focuses of this work was to explore the feasibility of employing modern deep learning architectures in Genomic Prediction. In this regard, it was possible to train highly over-parameterized architectures and still obtain good generalization. For some datasets and traits, these models outperform all others. However, this did not hold for all the models, traits and datasets studied. Besides, whether the gains in performance outweigh the increase in model size and thus its training and inference computational cost, and lack of interpretability, calls for further discussion.
dc.description.sponsorship.none.fl_txt_mv Este trabajo fue parcialmente financiado por la Universidad de la República y el proyecto ANII FDA 1_2018_1_154364
dc.format.extent.es.fl_str_mv 1 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Fariello, M., Arboleya, L., Belzarena, D. y otros. Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction. [en línea]. Póster, 2023.
dc.identifier.uri.none.fl_str_mv https://www.intlpag.org/30/
https://pag.confex.com/pag/30/poster/papers/viewonly.cgi?password=552823&username=49902
https://hdl.handle.net/20.500.12008/36884
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Plant and Animal Genome Conference (PAG)
dc.relation.ispartof.es.fl_str_mv Plant & Animal Genome Conference : PAG 30, San Diego, California, USA, 13-18 jan. 2023.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Predicción genómica
Deep learning
Signal processing
dc.title.none.fl_str_mv Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction
dc.type.es.fl_str_mv Póster
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Genome enabled prediction of complex traits aims to predict a measurable characteristic of an organism using their genetic information. In the present work we address diverse traits and organisms including Yeast growth, Wheat yield, Jersey bull fertility and various Holstein cattle milk-related traits. We benchmark several popular Machine Learning models: Bayesian and penalized linear regressions, kernel methods, and Decision Tree ensembles. Through exhaustive hyperparameter tuning we outperform state-of-the-art results in most datasets. We also evaluate two codification techniques for input data and perform ablation studies to assess robustness to genetic markers - i.e input features- elimination. We also explore different Deep Learning architectures for this task. We propose and evaluate Convolutional Neural Network (CNN) architectures, showing that using residual connections improves performance but that in some cases Fully Connected Networks outperform CNNs. We link this to the fact that absolute positions are relevant in genomes, and thus, CNN’s translational equivariance may not be an adequate inductive bias for tackling this problem. We evaluate Graph Neural Network (GNN) architectures by formulating trait prediction as a node regression problem on a population graph, where each node represents an individual, and edges association between their genetic information. We evaluate the transferability of these graphical models and find that the extent to which they exploit neighborhood information is limited. By combining CNN and GNN architectures, we could outperform all other models for predicting milk yield in Holstein cattle.The methods that are based on neural networks can be computationally demanding when used on high density chips or sequence data, even more when fully connected layers are used. To overcome this problem, we propose to obtain a new representation of the input vector by using the intermediate representation (code) of an Autoencoder (AE). Currently we are evaluating the performance benchmarks. Another common issue when using these databases is the missing data or the combination of chips of different SNP's numbers. Again, we propose to use AE for imputing the missing values. One of the main focuses of this work was to explore the feasibility of employing modern deep learning architectures in Genomic Prediction. In this regard, it was possible to train highly over-parameterized architectures and still obtain good generalization. For some datasets and traits, these models outperform all others. However, this did not hold for all the models, traits and datasets studied. Besides, whether the gains in performance outweigh the increase in model size and thus its training and inference computational cost, and lack of interpretability, calls for further discussion.
eu_rights_str_mv openAccess
format conferenceObject
id COLIBRI_45fd06ff7d389d3cfaacee6a1172f842
identifier_str_mv Fariello, M., Arboleya, L., Belzarena, D. y otros. Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction. [en línea]. Póster, 2023.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/36884
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Fariello Maria Inés, Universidad de la República (Uruguay). Facultad de Ingeniería.Arboleya Lucía, Universidad de la República (Uruguay). Facultad de Ingeniería.Belzarena Diego, Universidad de la República (Uruguay). Facultad de Ingeniería.De Los Santos Leonardo, Universidad de la República (Uruguay). Facultad de Ingeniería.Elenter Juan, Universidad de la República (Uruguay). Facultad de Ingeniería.Etchebarne Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería.Hounie Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.Ciappesoni Gabriel, Instituto Nacional de Investigación Agropecuaria, Las Brujas, UruguayNavajas Elly, Instituto Nacional de Investigación Agropecuaria, Las Brujas, UruguayLecumberry Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.2023-04-28T13:33:00Z2023-04-28T13:33:00Z2023Fariello, M., Arboleya, L., Belzarena, D. y otros. Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction. [en línea]. Póster, 2023.https://www.intlpag.org/30/https://pag.confex.com/pag/30/poster/papers/viewonly.cgi?password=552823&username=49902https://hdl.handle.net/20.500.12008/36884Genome enabled prediction of complex traits aims to predict a measurable characteristic of an organism using their genetic information. In the present work we address diverse traits and organisms including Yeast growth, Wheat yield, Jersey bull fertility and various Holstein cattle milk-related traits. We benchmark several popular Machine Learning models: Bayesian and penalized linear regressions, kernel methods, and Decision Tree ensembles. Through exhaustive hyperparameter tuning we outperform state-of-the-art results in most datasets. We also evaluate two codification techniques for input data and perform ablation studies to assess robustness to genetic markers - i.e input features- elimination. We also explore different Deep Learning architectures for this task. We propose and evaluate Convolutional Neural Network (CNN) architectures, showing that using residual connections improves performance but that in some cases Fully Connected Networks outperform CNNs. We link this to the fact that absolute positions are relevant in genomes, and thus, CNN’s translational equivariance may not be an adequate inductive bias for tackling this problem. We evaluate Graph Neural Network (GNN) architectures by formulating trait prediction as a node regression problem on a population graph, where each node represents an individual, and edges association between their genetic information. We evaluate the transferability of these graphical models and find that the extent to which they exploit neighborhood information is limited. By combining CNN and GNN architectures, we could outperform all other models for predicting milk yield in Holstein cattle.The methods that are based on neural networks can be computationally demanding when used on high density chips or sequence data, even more when fully connected layers are used. To overcome this problem, we propose to obtain a new representation of the input vector by using the intermediate representation (code) of an Autoencoder (AE). Currently we are evaluating the performance benchmarks. Another common issue when using these databases is the missing data or the combination of chips of different SNP's numbers. Again, we propose to use AE for imputing the missing values. One of the main focuses of this work was to explore the feasibility of employing modern deep learning architectures in Genomic Prediction. In this regard, it was possible to train highly over-parameterized architectures and still obtain good generalization. For some datasets and traits, these models outperform all others. However, this did not hold for all the models, traits and datasets studied. Besides, whether the gains in performance outweigh the increase in model size and thus its training and inference computational cost, and lack of interpretability, calls for further discussion.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-04-26T23:53:57Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) FABDEEHCNL23.pdf: 2916450 bytes, checksum: f105fe385f476611bc710ef31311ee36 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-04-27T15:22:14Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) FABDEEHCNL23.pdf: 2916450 bytes, checksum: f105fe385f476611bc710ef31311ee36 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-04-28T13:33:00Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) FABDEEHCNL23.pdf: 2916450 bytes, checksum: f105fe385f476611bc710ef31311ee36 (MD5) Previous issue date: 2023Este trabajo fue parcialmente financiado por la Universidad de la República y el proyecto ANII FDA 1_2018_1_1543641 p.application/pdfenengPlant and Animal Genome Conference (PAG)Plant & Animal Genome Conference : PAG 30, San Diego, California, USA, 13-18 jan. 2023.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Predicción genómicaDeep learningSignal processingSomething old, something new, something borrowed : Evaluation of different neural network architectures for genomic predictionPósterinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaFariello, Maria InésArboleya, LucíaBelzarena, DiegoDe Los Santos, LeonardoElenter, JuanEtchebarne, GuillermoHounie, IgnacioCiappesoni, GabrielNavajas, EllyLecumberry, FedericoLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/36884/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/36884/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838782http://localhost:8080/xmlui/bitstream/20.500.12008/36884/3/license_texte8c30e04e865334cac2bfcba70aad8cbMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/36884/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALFABDEEHCNL23.pdfFABDEEHCNL23.pdfapplication/pdf2916450http://localhost:8080/xmlui/bitstream/20.500.12008/36884/1/FABDEEHCNL23.pdff105fe385f476611bc710ef31311ee36MD5120.500.12008/368842023-04-28 10:33:00.07oai:colibri.udelar.edu.uy:20.500.12008/36884VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:20.381884COLIBRI - Universidad de la Repúblicafalse
spellingShingle Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction
Fariello, Maria Inés
Predicción genómica
Deep learning
Signal processing
status_str publishedVersion
title Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction
title_full Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction
title_fullStr Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction
title_full_unstemmed Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction
title_short Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction
title_sort Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction
topic Predicción genómica
Deep learning
Signal processing
url https://www.intlpag.org/30/
https://pag.confex.com/pag/30/poster/papers/viewonly.cgi?password=552823&username=49902
https://hdl.handle.net/20.500.12008/36884