Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction
Resumen:
Genome enabled prediction of complex traits aims to predict a measurable characteristic of an organism using their genetic information. In the present work we address diverse traits and organisms including Yeast growth, Wheat yield, Jersey bull fertility and various Holstein cattle milk-related traits. We benchmark several popular Machine Learning models: Bayesian and penalized linear regressions, kernel methods, and Decision Tree ensembles. Through exhaustive hyperparameter tuning we outperform state-of-the-art results in most datasets. We also evaluate two codification techniques for input data and perform ablation studies to assess robustness to genetic markers - i.e input features- elimination. We also explore different Deep Learning architectures for this task. We propose and evaluate Convolutional Neural Network (CNN) architectures, showing that using residual connections improves performance but that in some cases Fully Connected Networks outperform CNNs. We link this to the fact that absolute positions are relevant in genomes, and thus, CNN’s translational equivariance may not be an adequate inductive bias for tackling this problem. We evaluate Graph Neural Network (GNN) architectures by formulating trait prediction as a node regression problem on a population graph, where each node represents an individual, and edges association between their genetic information. We evaluate the transferability of these graphical models and find that the extent to which they exploit neighborhood information is limited. By combining CNN and GNN architectures, we could outperform all other models for predicting milk yield in Holstein cattle.The methods that are based on neural networks can be computationally demanding when used on high density chips or sequence data, even more when fully connected layers are used. To overcome this problem, we propose to obtain a new representation of the input vector by using the intermediate representation (code) of an Autoencoder (AE). Currently we are evaluating the performance benchmarks. Another common issue when using these databases is the missing data or the combination of chips of different SNP's numbers. Again, we propose to use AE for imputing the missing values. One of the main focuses of this work was to explore the feasibility of employing modern deep learning architectures in Genomic Prediction. In this regard, it was possible to train highly over-parameterized architectures and still obtain good generalization. For some datasets and traits, these models outperform all others. However, this did not hold for all the models, traits and datasets studied. Besides, whether the gains in performance outweigh the increase in model size and thus its training and inference computational cost, and lack of interpretability, calls for further discussion.
2023 | |
Este trabajo fue parcialmente financiado por la Universidad de la República y el proyecto ANII FDA 1_2018_1_154364 | |
Predicción genómica Deep learning Signal processing |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://www.intlpag.org/30/
https://pag.confex.com/pag/30/poster/papers/viewonly.cgi?password=552823&username=49902 https://hdl.handle.net/20.500.12008/36884 |
|
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522932713324544 |
---|---|
author | Fariello, Maria Inés |
author2 | Arboleya, Lucía Belzarena, Diego De Los Santos, Leonardo Elenter, Juan Etchebarne, Guillermo Hounie, Ignacio Ciappesoni, Gabriel Navajas, Elly Lecumberry, Federico |
author2_role | author author author author author author author author author |
author_facet | Fariello, Maria Inés Arboleya, Lucía Belzarena, Diego De Los Santos, Leonardo Elenter, Juan Etchebarne, Guillermo Hounie, Ignacio Ciappesoni, Gabriel Navajas, Elly Lecumberry, Federico |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 e8c30e04e865334cac2bfcba70aad8cb 1996b8461bc290aef6a27d78c67b6b52 f105fe385f476611bc710ef31311ee36 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/36884/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/36884/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/36884/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/36884/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/36884/1/FABDEEHCNL23.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Fariello Maria Inés, Universidad de la República (Uruguay). Facultad de Ingeniería. Arboleya Lucía, Universidad de la República (Uruguay). Facultad de Ingeniería. Belzarena Diego, Universidad de la República (Uruguay). Facultad de Ingeniería. De Los Santos Leonardo, Universidad de la República (Uruguay). Facultad de Ingeniería. Elenter Juan, Universidad de la República (Uruguay). Facultad de Ingeniería. Etchebarne Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería. Hounie Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería. Ciappesoni Gabriel, Instituto Nacional de Investigación Agropecuaria, Las Brujas, Uruguay Navajas Elly, Instituto Nacional de Investigación Agropecuaria, Las Brujas, Uruguay Lecumberry Federico, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.creator.none.fl_str_mv | Fariello, Maria Inés Arboleya, Lucía Belzarena, Diego De Los Santos, Leonardo Elenter, Juan Etchebarne, Guillermo Hounie, Ignacio Ciappesoni, Gabriel Navajas, Elly Lecumberry, Federico |
dc.date.accessioned.none.fl_str_mv | 2023-04-28T13:33:00Z |
dc.date.available.none.fl_str_mv | 2023-04-28T13:33:00Z |
dc.date.issued.none.fl_str_mv | 2023 |
dc.description.abstract.none.fl_txt_mv | Genome enabled prediction of complex traits aims to predict a measurable characteristic of an organism using their genetic information. In the present work we address diverse traits and organisms including Yeast growth, Wheat yield, Jersey bull fertility and various Holstein cattle milk-related traits. We benchmark several popular Machine Learning models: Bayesian and penalized linear regressions, kernel methods, and Decision Tree ensembles. Through exhaustive hyperparameter tuning we outperform state-of-the-art results in most datasets. We also evaluate two codification techniques for input data and perform ablation studies to assess robustness to genetic markers - i.e input features- elimination. We also explore different Deep Learning architectures for this task. We propose and evaluate Convolutional Neural Network (CNN) architectures, showing that using residual connections improves performance but that in some cases Fully Connected Networks outperform CNNs. We link this to the fact that absolute positions are relevant in genomes, and thus, CNN’s translational equivariance may not be an adequate inductive bias for tackling this problem. We evaluate Graph Neural Network (GNN) architectures by formulating trait prediction as a node regression problem on a population graph, where each node represents an individual, and edges association between their genetic information. We evaluate the transferability of these graphical models and find that the extent to which they exploit neighborhood information is limited. By combining CNN and GNN architectures, we could outperform all other models for predicting milk yield in Holstein cattle.The methods that are based on neural networks can be computationally demanding when used on high density chips or sequence data, even more when fully connected layers are used. To overcome this problem, we propose to obtain a new representation of the input vector by using the intermediate representation (code) of an Autoencoder (AE). Currently we are evaluating the performance benchmarks. Another common issue when using these databases is the missing data or the combination of chips of different SNP's numbers. Again, we propose to use AE for imputing the missing values. One of the main focuses of this work was to explore the feasibility of employing modern deep learning architectures in Genomic Prediction. In this regard, it was possible to train highly over-parameterized architectures and still obtain good generalization. For some datasets and traits, these models outperform all others. However, this did not hold for all the models, traits and datasets studied. Besides, whether the gains in performance outweigh the increase in model size and thus its training and inference computational cost, and lack of interpretability, calls for further discussion. |
dc.description.sponsorship.none.fl_txt_mv | Este trabajo fue parcialmente financiado por la Universidad de la República y el proyecto ANII FDA 1_2018_1_154364 |
dc.format.extent.es.fl_str_mv | 1 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Fariello, M., Arboleya, L., Belzarena, D. y otros. Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction. [en línea]. Póster, 2023. |
dc.identifier.uri.none.fl_str_mv | https://www.intlpag.org/30/ https://pag.confex.com/pag/30/poster/papers/viewonly.cgi?password=552823&username=49902 https://hdl.handle.net/20.500.12008/36884 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | Plant and Animal Genome Conference (PAG) |
dc.relation.ispartof.es.fl_str_mv | Plant & Animal Genome Conference : PAG 30, San Diego, California, USA, 13-18 jan. 2023. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Predicción genómica Deep learning Signal processing |
dc.title.none.fl_str_mv | Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction |
dc.type.es.fl_str_mv | Póster |
dc.type.none.fl_str_mv | info:eu-repo/semantics/conferenceObject |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Genome enabled prediction of complex traits aims to predict a measurable characteristic of an organism using their genetic information. In the present work we address diverse traits and organisms including Yeast growth, Wheat yield, Jersey bull fertility and various Holstein cattle milk-related traits. We benchmark several popular Machine Learning models: Bayesian and penalized linear regressions, kernel methods, and Decision Tree ensembles. Through exhaustive hyperparameter tuning we outperform state-of-the-art results in most datasets. We also evaluate two codification techniques for input data and perform ablation studies to assess robustness to genetic markers - i.e input features- elimination. We also explore different Deep Learning architectures for this task. We propose and evaluate Convolutional Neural Network (CNN) architectures, showing that using residual connections improves performance but that in some cases Fully Connected Networks outperform CNNs. We link this to the fact that absolute positions are relevant in genomes, and thus, CNN’s translational equivariance may not be an adequate inductive bias for tackling this problem. We evaluate Graph Neural Network (GNN) architectures by formulating trait prediction as a node regression problem on a population graph, where each node represents an individual, and edges association between their genetic information. We evaluate the transferability of these graphical models and find that the extent to which they exploit neighborhood information is limited. By combining CNN and GNN architectures, we could outperform all other models for predicting milk yield in Holstein cattle.The methods that are based on neural networks can be computationally demanding when used on high density chips or sequence data, even more when fully connected layers are used. To overcome this problem, we propose to obtain a new representation of the input vector by using the intermediate representation (code) of an Autoencoder (AE). Currently we are evaluating the performance benchmarks. Another common issue when using these databases is the missing data or the combination of chips of different SNP's numbers. Again, we propose to use AE for imputing the missing values. One of the main focuses of this work was to explore the feasibility of employing modern deep learning architectures in Genomic Prediction. In this regard, it was possible to train highly over-parameterized architectures and still obtain good generalization. For some datasets and traits, these models outperform all others. However, this did not hold for all the models, traits and datasets studied. Besides, whether the gains in performance outweigh the increase in model size and thus its training and inference computational cost, and lack of interpretability, calls for further discussion. |
eu_rights_str_mv | openAccess |
format | conferenceObject |
id | COLIBRI_45fd06ff7d389d3cfaacee6a1172f842 |
identifier_str_mv | Fariello, M., Arboleya, L., Belzarena, D. y otros. Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction. [en línea]. Póster, 2023. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/36884 |
publishDate | 2023 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Fariello Maria Inés, Universidad de la República (Uruguay). Facultad de Ingeniería.Arboleya Lucía, Universidad de la República (Uruguay). Facultad de Ingeniería.Belzarena Diego, Universidad de la República (Uruguay). Facultad de Ingeniería.De Los Santos Leonardo, Universidad de la República (Uruguay). Facultad de Ingeniería.Elenter Juan, Universidad de la República (Uruguay). Facultad de Ingeniería.Etchebarne Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería.Hounie Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.Ciappesoni Gabriel, Instituto Nacional de Investigación Agropecuaria, Las Brujas, UruguayNavajas Elly, Instituto Nacional de Investigación Agropecuaria, Las Brujas, UruguayLecumberry Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.2023-04-28T13:33:00Z2023-04-28T13:33:00Z2023Fariello, M., Arboleya, L., Belzarena, D. y otros. Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction. [en línea]. Póster, 2023.https://www.intlpag.org/30/https://pag.confex.com/pag/30/poster/papers/viewonly.cgi?password=552823&username=49902https://hdl.handle.net/20.500.12008/36884Genome enabled prediction of complex traits aims to predict a measurable characteristic of an organism using their genetic information. In the present work we address diverse traits and organisms including Yeast growth, Wheat yield, Jersey bull fertility and various Holstein cattle milk-related traits. We benchmark several popular Machine Learning models: Bayesian and penalized linear regressions, kernel methods, and Decision Tree ensembles. Through exhaustive hyperparameter tuning we outperform state-of-the-art results in most datasets. We also evaluate two codification techniques for input data and perform ablation studies to assess robustness to genetic markers - i.e input features- elimination. We also explore different Deep Learning architectures for this task. We propose and evaluate Convolutional Neural Network (CNN) architectures, showing that using residual connections improves performance but that in some cases Fully Connected Networks outperform CNNs. We link this to the fact that absolute positions are relevant in genomes, and thus, CNN’s translational equivariance may not be an adequate inductive bias for tackling this problem. We evaluate Graph Neural Network (GNN) architectures by formulating trait prediction as a node regression problem on a population graph, where each node represents an individual, and edges association between their genetic information. We evaluate the transferability of these graphical models and find that the extent to which they exploit neighborhood information is limited. By combining CNN and GNN architectures, we could outperform all other models for predicting milk yield in Holstein cattle.The methods that are based on neural networks can be computationally demanding when used on high density chips or sequence data, even more when fully connected layers are used. To overcome this problem, we propose to obtain a new representation of the input vector by using the intermediate representation (code) of an Autoencoder (AE). Currently we are evaluating the performance benchmarks. Another common issue when using these databases is the missing data or the combination of chips of different SNP's numbers. Again, we propose to use AE for imputing the missing values. One of the main focuses of this work was to explore the feasibility of employing modern deep learning architectures in Genomic Prediction. In this regard, it was possible to train highly over-parameterized architectures and still obtain good generalization. For some datasets and traits, these models outperform all others. However, this did not hold for all the models, traits and datasets studied. Besides, whether the gains in performance outweigh the increase in model size and thus its training and inference computational cost, and lack of interpretability, calls for further discussion.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-04-26T23:53:57Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) FABDEEHCNL23.pdf: 2916450 bytes, checksum: f105fe385f476611bc710ef31311ee36 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-04-27T15:22:14Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) FABDEEHCNL23.pdf: 2916450 bytes, checksum: f105fe385f476611bc710ef31311ee36 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-04-28T13:33:00Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) FABDEEHCNL23.pdf: 2916450 bytes, checksum: f105fe385f476611bc710ef31311ee36 (MD5) Previous issue date: 2023Este trabajo fue parcialmente financiado por la Universidad de la República y el proyecto ANII FDA 1_2018_1_1543641 p.application/pdfenengPlant and Animal Genome Conference (PAG)Plant & Animal Genome Conference : PAG 30, San Diego, California, USA, 13-18 jan. 2023.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Predicción genómicaDeep learningSignal processingSomething old, something new, something borrowed : Evaluation of different neural network architectures for genomic predictionPósterinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaFariello, Maria InésArboleya, LucíaBelzarena, DiegoDe Los Santos, LeonardoElenter, JuanEtchebarne, GuillermoHounie, IgnacioCiappesoni, GabrielNavajas, EllyLecumberry, FedericoLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/36884/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/36884/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838782http://localhost:8080/xmlui/bitstream/20.500.12008/36884/3/license_texte8c30e04e865334cac2bfcba70aad8cbMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/36884/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALFABDEEHCNL23.pdfFABDEEHCNL23.pdfapplication/pdf2916450http://localhost:8080/xmlui/bitstream/20.500.12008/36884/1/FABDEEHCNL23.pdff105fe385f476611bc710ef31311ee36MD5120.500.12008/368842023-04-28 10:33:00.07oai:colibri.udelar.edu.uy:20.500.12008/36884VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:20.381884COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction Fariello, Maria Inés Predicción genómica Deep learning Signal processing |
status_str | publishedVersion |
title | Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction |
title_full | Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction |
title_fullStr | Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction |
title_full_unstemmed | Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction |
title_short | Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction |
title_sort | Something old, something new, something borrowed : Evaluation of different neural network architectures for genomic prediction |
topic | Predicción genómica Deep learning Signal processing |
url | https://www.intlpag.org/30/ https://pag.confex.com/pag/30/poster/papers/viewonly.cgi?password=552823&username=49902 https://hdl.handle.net/20.500.12008/36884 |