A classification theorem for compact Cauchy horizons in vacuum spacetimes
Resumen:
We establish a complete classification theorem for the topology and for the null generators of compact non-degenerate Cauchy horizons of time orientable smooth vacuum 3+1-spacetimes. We show that, either: (i) all generators are closed, or (ii) only two generators are closed and any other densely fills a two-torus, or (iii) every generator densely fills a two-torus, or (iv) every generator densely fills the horizon. We then show that, respectively to (i)-(iv), the horizon’s manifold is either: (i’) a Seifert manifold, or (ii’) a lens space, or (iii’) a two-torus bundle over a circle, or, (iv’) a three-torus. All the four possibilities are known to arise in examples. In the last case, (iv), (iv’), we show in addition that the spacetime is indeed flat Kasner, thus settling a problem posed by Isenberg and Moncrief for ergodic horizons. The results of this article open the door for a full parameterization of the metrics of all vacuum spacetimes with a compact Cauchy horizon. The method of proof permits direct generalizations to higher dimensions.
2020 | |
Cauchy horizons Classification theorem |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/41664 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0) |
_version_ | 1807522805056536576 |
---|---|
author | Bustamante, Ignacio |
author2 | Reiris Ithurralde, Martín |
author2_role | author |
author_facet | Bustamante, Ignacio Reiris Ithurralde, Martín |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a9ac1bac94fe38dbe560422d834a993f 506a4fb14a9b3cd9312f046a753a8359 27d85011139cdc22b845da52c980f01f d7363e735f6ba3a98794a461807bf1b0 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/41664/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/41664/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/41664/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/41664/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/41664/1/101007s1071402102809z.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Bustamante Ignacio, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática. Reiris Ithurralde Martín, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática. |
dc.creator.none.fl_str_mv | Bustamante, Ignacio Reiris Ithurralde, Martín |
dc.date.accessioned.none.fl_str_mv | 2023-12-04T19:39:54Z |
dc.date.available.none.fl_str_mv | 2023-12-04T19:39:54Z |
dc.date.issued.none.fl_str_mv | 2020 |
dc.description.abstract.none.fl_txt_mv | We establish a complete classification theorem for the topology and for the null generators of compact non-degenerate Cauchy horizons of time orientable smooth vacuum 3+1-spacetimes. We show that, either: (i) all generators are closed, or (ii) only two generators are closed and any other densely fills a two-torus, or (iii) every generator densely fills a two-torus, or (iv) every generator densely fills the horizon. We then show that, respectively to (i)-(iv), the horizon’s manifold is either: (i’) a Seifert manifold, or (ii’) a lens space, or (iii’) a two-torus bundle over a circle, or, (iv’) a three-torus. All the four possibilities are known to arise in examples. In the last case, (iv), (iv’), we show in addition that the spacetime is indeed flat Kasner, thus settling a problem posed by Isenberg and Moncrief for ergodic horizons. The results of this article open the door for a full parameterization of the metrics of all vacuum spacetimes with a compact Cauchy horizon. The method of proof permits direct generalizations to higher dimensions. |
dc.description.es.fl_txt_mv | También publicado en General Relativity and Gravitation. 2021, 53: 36. DOI: 10.1007/s10714-021-02809-z. |
dc.format.extent.es.fl_str_mv | 10 h. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Bustamante, I y Reiris Ithurralde, M. "A classification theorem for compact Cauchy horizons in vacuum spacetimes" [Preprint]. Publicado en: General Relativity and Quantum Cosmology. 2020 arXiv:2008.11926, Ago 2020: 1-10 h. DOI: 10.48550/arXiv.2008.11926. |
dc.identifier.doi.none.fl_str_mv | 10.48550/arXiv.2008.11926 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/41664 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | arXiv |
dc.relation.ispartof.es.fl_str_mv | General Relativity and Quantum Cosmology, arXiv:2008.11926, Ago 2020: 1-10. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Cauchy horizons Classification theorem |
dc.title.none.fl_str_mv | A classification theorem for compact Cauchy horizons in vacuum spacetimes |
dc.type.es.fl_str_mv | Preprint |
dc.type.none.fl_str_mv | info:eu-repo/semantics/preprint |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/submittedVersion |
description | También publicado en General Relativity and Gravitation. 2021, 53: 36. DOI: 10.1007/s10714-021-02809-z. |
eu_rights_str_mv | openAccess |
format | preprint |
id | COLIBRI_45e9f32660f0bdc80adef6ff9e96001b |
identifier_str_mv | Bustamante, I y Reiris Ithurralde, M. "A classification theorem for compact Cauchy horizons in vacuum spacetimes" [Preprint]. Publicado en: General Relativity and Quantum Cosmology. 2020 arXiv:2008.11926, Ago 2020: 1-10 h. DOI: 10.48550/arXiv.2008.11926. 10.48550/arXiv.2008.11926 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/41664 |
publishDate | 2020 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0) |
spelling | Bustamante Ignacio, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.Reiris Ithurralde Martín, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.2023-12-04T19:39:54Z2023-12-04T19:39:54Z2020Bustamante, I y Reiris Ithurralde, M. "A classification theorem for compact Cauchy horizons in vacuum spacetimes" [Preprint]. Publicado en: General Relativity and Quantum Cosmology. 2020 arXiv:2008.11926, Ago 2020: 1-10 h. DOI: 10.48550/arXiv.2008.11926.https://hdl.handle.net/20.500.12008/4166410.48550/arXiv.2008.11926También publicado en General Relativity and Gravitation. 2021, 53: 36. DOI: 10.1007/s10714-021-02809-z.We establish a complete classification theorem for the topology and for the null generators of compact non-degenerate Cauchy horizons of time orientable smooth vacuum 3+1-spacetimes. We show that, either: (i) all generators are closed, or (ii) only two generators are closed and any other densely fills a two-torus, or (iii) every generator densely fills a two-torus, or (iv) every generator densely fills the horizon. We then show that, respectively to (i)-(iv), the horizon’s manifold is either: (i’) a Seifert manifold, or (ii’) a lens space, or (iii’) a two-torus bundle over a circle, or, (iv’) a three-torus. All the four possibilities are known to arise in examples. In the last case, (iv), (iv’), we show in addition that the spacetime is indeed flat Kasner, thus settling a problem posed by Isenberg and Moncrief for ergodic horizons. The results of this article open the door for a full parameterization of the metrics of all vacuum spacetimes with a compact Cauchy horizon. The method of proof permits direct generalizations to higher dimensions.Submitted by Parodi Mónica (mparodi@fcien.edu.uy) on 2023-11-29T17:22:30Z No. of bitstreams: 2 license_rdf: 26308 bytes, checksum: 27d85011139cdc22b845da52c980f01f (MD5) 101007s1071402102809z.pdf: 162654 bytes, checksum: d7363e735f6ba3a98794a461807bf1b0 (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2023-12-04T19:31:24Z (GMT) No. of bitstreams: 2 license_rdf: 26308 bytes, checksum: 27d85011139cdc22b845da52c980f01f (MD5) 101007s1071402102809z.pdf: 162654 bytes, checksum: d7363e735f6ba3a98794a461807bf1b0 (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2023-12-04T19:39:54Z (GMT). No. of bitstreams: 2 license_rdf: 26308 bytes, checksum: 27d85011139cdc22b845da52c980f01f (MD5) 101007s1071402102809z.pdf: 162654 bytes, checksum: d7363e735f6ba3a98794a461807bf1b0 (MD5) Previous issue date: 202010 h.application/pdfenengarXivGeneral Relativity and Quantum Cosmology, arXiv:2008.11926, Ago 2020: 1-10.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0)Cauchy horizonsClassification theoremA classification theorem for compact Cauchy horizons in vacuum spacetimesPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaBustamante, IgnacioReiris Ithurralde, MartínLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/41664/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/41664/2/license_urla9ac1bac94fe38dbe560422d834a993fMD52license_textlicense_texttext/html; charset=utf-818403http://localhost:8080/xmlui/bitstream/20.500.12008/41664/3/license_text506a4fb14a9b3cd9312f046a753a8359MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-826308http://localhost:8080/xmlui/bitstream/20.500.12008/41664/4/license_rdf27d85011139cdc22b845da52c980f01fMD54ORIGINAL101007s1071402102809z.pdf101007s1071402102809z.pdfapplication/pdf162654http://localhost:8080/xmlui/bitstream/20.500.12008/41664/1/101007s1071402102809z.pdfd7363e735f6ba3a98794a461807bf1b0MD5120.500.12008/416642023-12-04 16:39:54.05oai:colibri.udelar.edu.uy:20.500.12008/41664VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:16.554591COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | A classification theorem for compact Cauchy horizons in vacuum spacetimes Bustamante, Ignacio Cauchy horizons Classification theorem |
status_str | submittedVersion |
title | A classification theorem for compact Cauchy horizons in vacuum spacetimes |
title_full | A classification theorem for compact Cauchy horizons in vacuum spacetimes |
title_fullStr | A classification theorem for compact Cauchy horizons in vacuum spacetimes |
title_full_unstemmed | A classification theorem for compact Cauchy horizons in vacuum spacetimes |
title_short | A classification theorem for compact Cauchy horizons in vacuum spacetimes |
title_sort | A classification theorem for compact Cauchy horizons in vacuum spacetimes |
topic | Cauchy horizons Classification theorem |
url | https://hdl.handle.net/20.500.12008/41664 |