Coding of multichannel signals with irregular sampling rates and data gaps

Cerveñansky Fierro, Pablo

Supervisor(es): Martín, Alvaro - Seroussi, Gadiel

Resumen:

The relentless advances in mobile communications and the Internet have contributed to a rapid increase in the amount of digital data created and replicated worldwide, which is estimated to double every three years. In this context, data compression algorithms, which allow for the reduction of the number of bits needed to represent digital data, have become increasingly relevant. In this work, we focus on the compression of multichannel signals with irregular sampling rates and with data gaps. We consider state-of-the-art algorithms, which were designed to compress gapless signals with regular sampling, adapt them to operate with signals with irregular sampling rates and data gaps, and then evaluate their performance experimentally, through the compression of signals obtained from real-world datasets. Both the original and our adapted algorithms work in a near-lossless fashion, guaranteeing a bounded per-sample absolute error between the decompressed and the original signals. This includes the important lossless compression case, which corresponds to an error bound of zero. The algorithms compress signals by exploiting correlation between signal samples taken at close times (temporal correlation), and, in some cases, between samples from different channels (spatial correlation). For most algorithms we design and implement two variants: a masking (M ) variant, which first encodes the position of all the gaps, and then proceeds to encode the data values separately, and a non-masking (NM ) variant, which encodes the gaps and the data values together. For each algorithm, we compare the compression performance of both variants: our experimental results suggest that variant M is more robust and performs better in general. Every implemented algorithm variant depends on a window size parameter, which defines the size of the windows into which the data are partitioned for encoding. We analyze the sensitivity of variant M of each algorithm to this size parameter: for each dataset, we compress each data file, and compare the results obtained when using a window size optimized for said specific file, against the results obtained when using a window size optimized for the whole dataset. Our experimental results indicate that the difference in compression performance is generally rather small. The last part of our experimental analysis consists of comparing the compression performance of our adapted algorithms, with each other, and with the general-purpose lossless compression algorithm gzip. Following previous experimental results, we only consider variant M of each algorithm, and we always use the optimal window size for the whole dataset. Our experimental results reveal that none of the algorithm variants obtains the best compression performance in every scenario, which means that the optimal selection of a variant depends on the characteristics of the data to be compressed, and the error threshold that is allowed. In some cases, even a general-purpose compression algorithm such as gzip outperforms the specific algorithm variants. Nevertheless, we extract some general conclusions from our analysis: for large error thresholds, variant M of algorithm APCA achieves the best compression results, while variant M of algorithm PCA (and, in some cases of lossless compression, algorithm gzip) are preferred for lower threshold scenarios.


Detalles Bibliográficos
2021
Multichannel signal compression
Near-lossless compression
Irregular sampling rate
Data gaps
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/36555
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523183362834432
author Cerveñansky Fierro, Pablo
author_facet Cerveñansky Fierro, Pablo
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
8c146f9755c137d266000df56aae59c9
1996b8461bc290aef6a27d78c67b6b52
729a92b2bcc32a96dd87aa10a107d1ba
b92f03258526e2cfba4eb1fa9c2c7202
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/36555/6/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/36555/3/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/36555/4/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/36555/5/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/36555/1/Cer21.pdf
http://localhost:8080/xmlui/bitstream/20.500.12008/36555/2/Cer21_APENDICE.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Cerveñansky Fierro Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.creator.advisor.none.fl_str_mv Martín, Alvaro
Seroussi, Gadiel
dc.creator.none.fl_str_mv Cerveñansky Fierro, Pablo
dc.date.accessioned.none.fl_str_mv 2023-03-28T22:53:00Z
dc.date.available.none.fl_str_mv 2023-03-28T22:53:00Z
dc.date.issued.none.fl_str_mv 2021
dc.description.abstract.none.fl_txt_mv The relentless advances in mobile communications and the Internet have contributed to a rapid increase in the amount of digital data created and replicated worldwide, which is estimated to double every three years. In this context, data compression algorithms, which allow for the reduction of the number of bits needed to represent digital data, have become increasingly relevant. In this work, we focus on the compression of multichannel signals with irregular sampling rates and with data gaps. We consider state-of-the-art algorithms, which were designed to compress gapless signals with regular sampling, adapt them to operate with signals with irregular sampling rates and data gaps, and then evaluate their performance experimentally, through the compression of signals obtained from real-world datasets. Both the original and our adapted algorithms work in a near-lossless fashion, guaranteeing a bounded per-sample absolute error between the decompressed and the original signals. This includes the important lossless compression case, which corresponds to an error bound of zero. The algorithms compress signals by exploiting correlation between signal samples taken at close times (temporal correlation), and, in some cases, between samples from different channels (spatial correlation). For most algorithms we design and implement two variants: a masking (M ) variant, which first encodes the position of all the gaps, and then proceeds to encode the data values separately, and a non-masking (NM ) variant, which encodes the gaps and the data values together. For each algorithm, we compare the compression performance of both variants: our experimental results suggest that variant M is more robust and performs better in general. Every implemented algorithm variant depends on a window size parameter, which defines the size of the windows into which the data are partitioned for encoding. We analyze the sensitivity of variant M of each algorithm to this size parameter: for each dataset, we compress each data file, and compare the results obtained when using a window size optimized for said specific file, against the results obtained when using a window size optimized for the whole dataset. Our experimental results indicate that the difference in compression performance is generally rather small. The last part of our experimental analysis consists of comparing the compression performance of our adapted algorithms, with each other, and with the general-purpose lossless compression algorithm gzip. Following previous experimental results, we only consider variant M of each algorithm, and we always use the optimal window size for the whole dataset. Our experimental results reveal that none of the algorithm variants obtains the best compression performance in every scenario, which means that the optimal selection of a variant depends on the characteristics of the data to be compressed, and the error threshold that is allowed. In some cases, even a general-purpose compression algorithm such as gzip outperforms the specific algorithm variants. Nevertheless, we extract some general conclusions from our analysis: for large error thresholds, variant M of algorithm APCA achieves the best compression results, while variant M of algorithm PCA (and, in some cases of lossless compression, algorithm gzip) are preferred for lower threshold scenarios.
dc.format.extent.es.fl_str_mv 92 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Cerveñansky Fierro, P. Coding of multichannel signals with irregular sampling rates and data gaps [en línea]. Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2021.
dc.identifier.issn.none.fl_str_mv 1688-2792
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/36555
dc.language.iso.none.fl_str_mv en_US
eng
dc.publisher.es.fl_str_mv Udelar.FI
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Multichannel signal compression
Near-lossless compression
Irregular sampling rate
Data gaps
dc.title.none.fl_str_mv Coding of multichannel signals with irregular sampling rates and data gaps
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description The relentless advances in mobile communications and the Internet have contributed to a rapid increase in the amount of digital data created and replicated worldwide, which is estimated to double every three years. In this context, data compression algorithms, which allow for the reduction of the number of bits needed to represent digital data, have become increasingly relevant. In this work, we focus on the compression of multichannel signals with irregular sampling rates and with data gaps. We consider state-of-the-art algorithms, which were designed to compress gapless signals with regular sampling, adapt them to operate with signals with irregular sampling rates and data gaps, and then evaluate their performance experimentally, through the compression of signals obtained from real-world datasets. Both the original and our adapted algorithms work in a near-lossless fashion, guaranteeing a bounded per-sample absolute error between the decompressed and the original signals. This includes the important lossless compression case, which corresponds to an error bound of zero. The algorithms compress signals by exploiting correlation between signal samples taken at close times (temporal correlation), and, in some cases, between samples from different channels (spatial correlation). For most algorithms we design and implement two variants: a masking (M ) variant, which first encodes the position of all the gaps, and then proceeds to encode the data values separately, and a non-masking (NM ) variant, which encodes the gaps and the data values together. For each algorithm, we compare the compression performance of both variants: our experimental results suggest that variant M is more robust and performs better in general. Every implemented algorithm variant depends on a window size parameter, which defines the size of the windows into which the data are partitioned for encoding. We analyze the sensitivity of variant M of each algorithm to this size parameter: for each dataset, we compress each data file, and compare the results obtained when using a window size optimized for said specific file, against the results obtained when using a window size optimized for the whole dataset. Our experimental results indicate that the difference in compression performance is generally rather small. The last part of our experimental analysis consists of comparing the compression performance of our adapted algorithms, with each other, and with the general-purpose lossless compression algorithm gzip. Following previous experimental results, we only consider variant M of each algorithm, and we always use the optimal window size for the whole dataset. Our experimental results reveal that none of the algorithm variants obtains the best compression performance in every scenario, which means that the optimal selection of a variant depends on the characteristics of the data to be compressed, and the error threshold that is allowed. In some cases, even a general-purpose compression algorithm such as gzip outperforms the specific algorithm variants. Nevertheless, we extract some general conclusions from our analysis: for large error thresholds, variant M of algorithm APCA achieves the best compression results, while variant M of algorithm PCA (and, in some cases of lossless compression, algorithm gzip) are preferred for lower threshold scenarios.
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_447883ffe88e56e3cca6a2eaca5e2f2d
identifier_str_mv Cerveñansky Fierro, P. Coding of multichannel signals with irregular sampling rates and data gaps [en línea]. Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2021.
1688-2792
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en_US
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/36555
publishDate 2021
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Cerveñansky Fierro Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería2023-03-28T22:53:00Z2023-03-28T22:53:00Z2021Cerveñansky Fierro, P. Coding of multichannel signals with irregular sampling rates and data gaps [en línea]. Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2021.1688-2792https://hdl.handle.net/20.500.12008/36555The relentless advances in mobile communications and the Internet have contributed to a rapid increase in the amount of digital data created and replicated worldwide, which is estimated to double every three years. In this context, data compression algorithms, which allow for the reduction of the number of bits needed to represent digital data, have become increasingly relevant. In this work, we focus on the compression of multichannel signals with irregular sampling rates and with data gaps. We consider state-of-the-art algorithms, which were designed to compress gapless signals with regular sampling, adapt them to operate with signals with irregular sampling rates and data gaps, and then evaluate their performance experimentally, through the compression of signals obtained from real-world datasets. Both the original and our adapted algorithms work in a near-lossless fashion, guaranteeing a bounded per-sample absolute error between the decompressed and the original signals. This includes the important lossless compression case, which corresponds to an error bound of zero. The algorithms compress signals by exploiting correlation between signal samples taken at close times (temporal correlation), and, in some cases, between samples from different channels (spatial correlation). For most algorithms we design and implement two variants: a masking (M ) variant, which first encodes the position of all the gaps, and then proceeds to encode the data values separately, and a non-masking (NM ) variant, which encodes the gaps and the data values together. For each algorithm, we compare the compression performance of both variants: our experimental results suggest that variant M is more robust and performs better in general. Every implemented algorithm variant depends on a window size parameter, which defines the size of the windows into which the data are partitioned for encoding. We analyze the sensitivity of variant M of each algorithm to this size parameter: for each dataset, we compress each data file, and compare the results obtained when using a window size optimized for said specific file, against the results obtained when using a window size optimized for the whole dataset. Our experimental results indicate that the difference in compression performance is generally rather small. The last part of our experimental analysis consists of comparing the compression performance of our adapted algorithms, with each other, and with the general-purpose lossless compression algorithm gzip. Following previous experimental results, we only consider variant M of each algorithm, and we always use the optimal window size for the whole dataset. Our experimental results reveal that none of the algorithm variants obtains the best compression performance in every scenario, which means that the optimal selection of a variant depends on the characteristics of the data to be compressed, and the error threshold that is allowed. In some cases, even a general-purpose compression algorithm such as gzip outperforms the specific algorithm variants. Nevertheless, we extract some general conclusions from our analysis: for large error thresholds, variant M of algorithm APCA achieves the best compression results, while variant M of algorithm PCA (and, in some cases of lossless compression, algorithm gzip) are preferred for lower threshold scenarios.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2023-03-21T14:30:22Z No. of bitstreams: 3 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Cer21.pdf: 49786033 bytes, checksum: 729a92b2bcc32a96dd87aa10a107d1ba (MD5) Cer21_APENDICE.pdf: 8777242 bytes, checksum: b92f03258526e2cfba4eb1fa9c2c7202 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-03-28T20:19:35Z (GMT) No. of bitstreams: 3 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Cer21.pdf: 49786033 bytes, checksum: 729a92b2bcc32a96dd87aa10a107d1ba (MD5) Cer21_APENDICE.pdf: 8777242 bytes, checksum: b92f03258526e2cfba4eb1fa9c2c7202 (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2023-03-28T22:53:00Z (GMT). No. of bitstreams: 3 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Cer21.pdf: 49786033 bytes, checksum: 729a92b2bcc32a96dd87aa10a107d1ba (MD5) Cer21_APENDICE.pdf: 8777242 bytes, checksum: b92f03258526e2cfba4eb1fa9c2c7202 (MD5) Previous issue date: 202192 p.application/pdfen_USengUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Multichannel signal compressionNear-lossless compressionIrregular sampling rateData gapsCoding of multichannel signals with irregular sampling rates and data gapsTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaCerveñansky Fierro, PabloMartín, AlvaroSeroussi, GadielUniversidad de la República (Uruguay). Facultad de IngenieríaMagíster en InformáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/36555/6/license.txt6429389a7df7277b72b7924fdc7d47a9MD56CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/36555/3/license_urla006180e3f5b2ad0b88185d14284c0e0MD53license_textlicense_texttext/html; charset=utf-838783http://localhost:8080/xmlui/bitstream/20.500.12008/36555/4/license_text8c146f9755c137d266000df56aae59c9MD54license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/36555/5/license_rdf1996b8461bc290aef6a27d78c67b6b52MD55ORIGINALCer21.pdfCer21.pdfapplication/pdf49786033http://localhost:8080/xmlui/bitstream/20.500.12008/36555/1/Cer21.pdf729a92b2bcc32a96dd87aa10a107d1baMD51Cer21_APENDICE.pdfCer21_APENDICE.pdfapplication/pdf8777242http://localhost:8080/xmlui/bitstream/20.500.12008/36555/2/Cer21_APENDICE.pdfb92f03258526e2cfba4eb1fa9c2c7202MD5220.500.12008/365552023-03-28 19:53:00.518oai:colibri.udelar.edu.uy:20.500.12008/36555VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:29.312886COLIBRI - Universidad de la Repúblicafalse
spellingShingle Coding of multichannel signals with irregular sampling rates and data gaps
Cerveñansky Fierro, Pablo
Multichannel signal compression
Near-lossless compression
Irregular sampling rate
Data gaps
status_str acceptedVersion
title Coding of multichannel signals with irregular sampling rates and data gaps
title_full Coding of multichannel signals with irregular sampling rates and data gaps
title_fullStr Coding of multichannel signals with irregular sampling rates and data gaps
title_full_unstemmed Coding of multichannel signals with irregular sampling rates and data gaps
title_short Coding of multichannel signals with irregular sampling rates and data gaps
title_sort Coding of multichannel signals with irregular sampling rates and data gaps
topic Multichannel signal compression
Near-lossless compression
Irregular sampling rate
Data gaps
url https://hdl.handle.net/20.500.12008/36555