Machine learning applied to the operation of fully renewable energy systems

Chaer, Ruben - Ramírez Paulino, Ignacio - Casaravilla, Gonzalo

Resumen:

This work presents a novel learning algorithm for the operation policy of power systems trying to minimize the cost of fulfilling the energy demand. The algorithm improves upon the classical reinforcement learning methods by controlling the sampling variance in the estimation of the future cost spatial differences, together with parameter regularization and dynamic exploring techniques. The proposed strategy was applied to a case of what could be the power system of Uruguay by 2050 based strongly in hydro, wind and solar energies, including three lakes, four groups of battery banks, and the basin runoff of the two main Uruguayan rivers. The generation in the year 2022 in Uruguay was 43% hydraulic, 40% wind plus solar, 7% biomass and 10% based on fossil fuels. This composition prints a very relevant stochastic component that makes it difficult to apply machine learning techniques without the kind of algorihms proposed in this work.


Detalles Bibliográficos
2023
Proyecto ANII : FSE_1_2017_1_144926 " Planificación de inversiones con energías variables, restricciones de red y gestión de demanda"
Costs
Heuristic algorithms
Power system dynamics
Stochastic processes
Solar energy
Reinforcement learning
Lakes
Approximate Stochastic Dynamic Programmings
Reinforcement Machine Learning
Renewable Energies
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/40506
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522936506023936
author Chaer, Ruben
author2 Ramírez Paulino, Ignacio
Casaravilla, Gonzalo
author2_role author
author
author_facet Chaer, Ruben
Ramírez Paulino, Ignacio
Casaravilla, Gonzalo
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
1274339f512f00ecc522a4c5febd859e
489f03e71d39068f329bdec8798bce58
56c48e61ad7a7d02b242d084c22ae054
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/40506/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/40506/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/40506/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/40506/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/40506/1/CRC23.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Chaer Ruben, Universidad de la República (Uruguay). Facultad de Ingeniería.
Ramírez Paulino Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.
Casaravilla Gonzalo, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.none.fl_str_mv Chaer, Ruben
Ramírez Paulino, Ignacio
Casaravilla, Gonzalo
dc.date.accessioned.none.fl_str_mv 2023-10-02T20:13:32Z
dc.date.available.none.fl_str_mv 2023-10-02T20:13:32Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv This work presents a novel learning algorithm for the operation policy of power systems trying to minimize the cost of fulfilling the energy demand. The algorithm improves upon the classical reinforcement learning methods by controlling the sampling variance in the estimation of the future cost spatial differences, together with parameter regularization and dynamic exploring techniques. The proposed strategy was applied to a case of what could be the power system of Uruguay by 2050 based strongly in hydro, wind and solar energies, including three lakes, four groups of battery banks, and the basin runoff of the two main Uruguayan rivers. The generation in the year 2022 in Uruguay was 43% hydraulic, 40% wind plus solar, 7% biomass and 10% based on fossil fuels. This composition prints a very relevant stochastic component that makes it difficult to apply machine learning techniques without the kind of algorihms proposed in this work.
dc.description.sponsorship.none.fl_txt_mv Proyecto ANII : FSE_1_2017_1_144926 " Planificación de inversiones con energías variables, restricciones de red y gestión de demanda"
dc.format.extent.es.fl_str_mv 6 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Chaer, R., Ramírez Paulino, I. y Casaravilla, G. Machine learning applied to the operation of fully renewable energy systems [Preprint]. Publicado en: 2023 IEEE PES GTD International Conference and Exposition (GTD), Istanbul, Turkiye, 22-25 may 2023, 6 p. DOI: 10.1109/GTD49768.2023.00053
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/40506
dc.language.iso.none.fl_str_mv en
eng
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Costs
Heuristic algorithms
Power system dynamics
Stochastic processes
Solar energy
Reinforcement learning
Lakes
Approximate Stochastic Dynamic Programmings
Reinforcement Machine Learning
Renewable Energies
dc.title.none.fl_str_mv Machine learning applied to the operation of fully renewable energy systems
dc.type.es.fl_str_mv Preprint
dc.type.none.fl_str_mv info:eu-repo/semantics/preprint
dc.type.version.none.fl_str_mv info:eu-repo/semantics/submittedVersion
description This work presents a novel learning algorithm for the operation policy of power systems trying to minimize the cost of fulfilling the energy demand. The algorithm improves upon the classical reinforcement learning methods by controlling the sampling variance in the estimation of the future cost spatial differences, together with parameter regularization and dynamic exploring techniques. The proposed strategy was applied to a case of what could be the power system of Uruguay by 2050 based strongly in hydro, wind and solar energies, including three lakes, four groups of battery banks, and the basin runoff of the two main Uruguayan rivers. The generation in the year 2022 in Uruguay was 43% hydraulic, 40% wind plus solar, 7% biomass and 10% based on fossil fuels. This composition prints a very relevant stochastic component that makes it difficult to apply machine learning techniques without the kind of algorihms proposed in this work.
eu_rights_str_mv openAccess
format preprint
id COLIBRI_40b0e219f771cd7beac7d6ee0bf7547b
identifier_str_mv Chaer, R., Ramírez Paulino, I. y Casaravilla, G. Machine learning applied to the operation of fully renewable energy systems [Preprint]. Publicado en: 2023 IEEE PES GTD International Conference and Exposition (GTD), Istanbul, Turkiye, 22-25 may 2023, 6 p. DOI: 10.1109/GTD49768.2023.00053
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/40506
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Chaer Ruben, Universidad de la República (Uruguay). Facultad de Ingeniería.Ramírez Paulino Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.Casaravilla Gonzalo, Universidad de la República (Uruguay). Facultad de Ingeniería.2023-10-02T20:13:32Z2023-10-02T20:13:32Z2023Chaer, R., Ramírez Paulino, I. y Casaravilla, G. Machine learning applied to the operation of fully renewable energy systems [Preprint]. Publicado en: 2023 IEEE PES GTD International Conference and Exposition (GTD), Istanbul, Turkiye, 22-25 may 2023, 6 p. DOI: 10.1109/GTD49768.2023.00053https://hdl.handle.net/20.500.12008/40506This work presents a novel learning algorithm for the operation policy of power systems trying to minimize the cost of fulfilling the energy demand. The algorithm improves upon the classical reinforcement learning methods by controlling the sampling variance in the estimation of the future cost spatial differences, together with parameter regularization and dynamic exploring techniques. The proposed strategy was applied to a case of what could be the power system of Uruguay by 2050 based strongly in hydro, wind and solar energies, including three lakes, four groups of battery banks, and the basin runoff of the two main Uruguayan rivers. The generation in the year 2022 in Uruguay was 43% hydraulic, 40% wind plus solar, 7% biomass and 10% based on fossil fuels. This composition prints a very relevant stochastic component that makes it difficult to apply machine learning techniques without the kind of algorihms proposed in this work.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-10-02T04:32:19Z No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) CRC23.pdf: 363240 bytes, checksum: 56c48e61ad7a7d02b242d084c22ae054 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-10-02T18:10:36Z (GMT) No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) CRC23.pdf: 363240 bytes, checksum: 56c48e61ad7a7d02b242d084c22ae054 (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2023-10-02T20:13:32Z (GMT). No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) CRC23.pdf: 363240 bytes, checksum: 56c48e61ad7a7d02b242d084c22ae054 (MD5) Previous issue date: 2023Proyecto ANII : FSE_1_2017_1_144926 " Planificación de inversiones con energías variables, restricciones de red y gestión de demanda"6 p.application/pdfenengLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)CostsHeuristic algorithmsPower system dynamicsStochastic processesSolar energyReinforcement learningLakesApproximate Stochastic Dynamic ProgrammingsReinforcement Machine LearningRenewable EnergiesMachine learning applied to the operation of fully renewable energy systemsPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaChaer, RubenRamírez Paulino, IgnacioCasaravilla, GonzaloPotenciaPotenciaProcesamiento de SeñalesProcesamiento de SeñalesEnergía EléctricaTratamiento de ImágenesEnergía EléctricaTratamiento de ImágenesLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/40506/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/40506/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-814403http://localhost:8080/xmlui/bitstream/20.500.12008/40506/3/license_text1274339f512f00ecc522a4c5febd859eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-825790http://localhost:8080/xmlui/bitstream/20.500.12008/40506/4/license_rdf489f03e71d39068f329bdec8798bce58MD54ORIGINALCRC23.pdfCRC23.pdfapplication/pdf363240http://localhost:8080/xmlui/bitstream/20.500.12008/40506/1/CRC23.pdf56c48e61ad7a7d02b242d084c22ae054MD5120.500.12008/405062024-07-24 17:25:47.592oai:colibri.udelar.edu.uy:20.500.12008/40506VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:33.795443COLIBRI - Universidad de la Repúblicafalse
spellingShingle Machine learning applied to the operation of fully renewable energy systems
Chaer, Ruben
Costs
Heuristic algorithms
Power system dynamics
Stochastic processes
Solar energy
Reinforcement learning
Lakes
Approximate Stochastic Dynamic Programmings
Reinforcement Machine Learning
Renewable Energies
status_str submittedVersion
title Machine learning applied to the operation of fully renewable energy systems
title_full Machine learning applied to the operation of fully renewable energy systems
title_fullStr Machine learning applied to the operation of fully renewable energy systems
title_full_unstemmed Machine learning applied to the operation of fully renewable energy systems
title_short Machine learning applied to the operation of fully renewable energy systems
title_sort Machine learning applied to the operation of fully renewable energy systems
topic Costs
Heuristic algorithms
Power system dynamics
Stochastic processes
Solar energy
Reinforcement learning
Lakes
Approximate Stochastic Dynamic Programmings
Reinforcement Machine Learning
Renewable Energies
url https://hdl.handle.net/20.500.12008/40506