A brief analysis of the dense extreme inception network for edge detection
Resumen:
This work describes DexiNed, a Dense Extreme Inception Network for Edge Detection proposed by Xavier Soria, Edgar Riba and Angel Sappa in [IEEE Winter Conference on Applications of Computer Vision (WACV), 2020]. The network is organized in blocks that extract edges at different resolutions, which are then merged to produce a multiscale edge map. For training, the authors introduced an annotated dataset (BIPED) specifically designed for edge detection. We perform a brief analysis of the results produced by DexiNed, highlighting its quality but also indicating its limitations. Overall, DexiNed produces state-of-the-art results.
2022 | |
Image edge detection Neural network HED Xception |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://www.ipol.im/pub/art/2022/423/
https://hdl.handle.net/20.500.12008/34134 |
|
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0) |
Resultados similares
-
A brief analysis of the holistically-nested edge detector
Autor(es):: Grompone von Gioi, Rafael
Fecha de publicación:: (2022) -
A sub-pixel edge detector: an implementation of the Canny/Devernay Algorithm
Autor(es):: Grompone von Gioi, Rafael
Fecha de publicación:: (2017) -
Solving the Generalized Steiner Problem in edge-survivable networks
Autor(es):: Sartor, Pablo
Fecha de publicación:: (2011) -
Finding edges by a contrario detection of periodic subsequences
Autor(es):: Tepper, Mariano
Fecha de publicación:: (2012) -
Finding contrasted and regular edges by a contrario detection of periodic subsequences
Autor(es):: Mejail, Marta
Fecha de publicación:: (2014)