A brief analysis of the dense extreme inception network for edge detection
Resumen:
This work describes DexiNed, a Dense Extreme Inception Network for Edge Detection proposed by Xavier Soria, Edgar Riba and Angel Sappa in [IEEE Winter Conference on Applications of Computer Vision (WACV), 2020]. The network is organized in blocks that extract edges at different resolutions, which are then merged to produce a multiscale edge map. For training, the authors introduced an annotated dataset (BIPED) specifically designed for edge detection. We perform a brief analysis of the results produced by DexiNed, highlighting its quality but also indicating its limitations. Overall, DexiNed produces state-of-the-art results.
2022 | |
Image edge detection Neural network HED Xception |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://www.ipol.im/pub/art/2022/423/
https://hdl.handle.net/20.500.12008/34134 |
|
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0) |
_version_ | 1807522899469271040 |
---|---|
author | Grompone von Gioi, Rafael |
author2 | Randall, Gregory |
author2_role | author |
author_facet | Grompone von Gioi, Rafael Randall, Gregory |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a9ac1bac94fe38dbe560422d834a993f 336de3b3b01611d7eba286b6ddc14579 6a69abe32f6fabdffa4c61be8f8efebd 9a119fc5dfa819bf65578e48b2f20d8f |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/34134/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/34134/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/34134/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/34134/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/34134/1/GR22a.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Grompone von Gioi Rafael, Université Paris-Saclay, France Randall Gregory, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.creator.none.fl_str_mv | Grompone von Gioi, Rafael Randall, Gregory |
dc.date.accessioned.none.fl_str_mv | 2022-10-13T12:25:16Z |
dc.date.available.none.fl_str_mv | 2022-10-13T12:25:16Z |
dc.date.issued.none.fl_str_mv | 2022 |
dc.description.abstract.none.fl_txt_mv | This work describes DexiNed, a Dense Extreme Inception Network for Edge Detection proposed by Xavier Soria, Edgar Riba and Angel Sappa in [IEEE Winter Conference on Applications of Computer Vision (WACV), 2020]. The network is organized in blocks that extract edges at different resolutions, which are then merged to produce a multiscale edge map. For training, the authors introduced an annotated dataset (BIPED) specifically designed for edge detection. We perform a brief analysis of the results produced by DexiNed, highlighting its quality but also indicating its limitations. Overall, DexiNed produces state-of-the-art results. |
dc.format.extent.es.fl_str_mv | 15 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Grompone von Gioi, R y Randall, G. "A brief analysis of the dense extreme inception network for edge detection". IPOL. Journal Image Processing On Line. [en línea]. 2022, no 12, pp. 389-403. DOI: 10.5201/ipol.2022.423 |
dc.identifier.doi.none.fl_str_mv | 10.5201/ipol.2022.423 |
dc.identifier.issn.none.fl_str_mv | 2105–1232 |
dc.identifier.uri.none.fl_str_mv | https://www.ipol.im/pub/art/2022/423/ https://hdl.handle.net/20.500.12008/34134 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | Centre Borelli, ENS Paris-Saclay; DMI, Universitat de les Illes Balears; Fing, Universidad de la República. |
dc.relation.ispartof.es.fl_str_mv | IPOL. Journal Image Processing On Line, no 12, Oct 2022, pp. 389-403. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Image edge detection Neural network HED Xception |
dc.title.none.fl_str_mv | A brief analysis of the dense extreme inception network for edge detection |
dc.type.es.fl_str_mv | Artículo |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | This work describes DexiNed, a Dense Extreme Inception Network for Edge Detection proposed by Xavier Soria, Edgar Riba and Angel Sappa in [IEEE Winter Conference on Applications of Computer Vision (WACV), 2020]. The network is organized in blocks that extract edges at different resolutions, which are then merged to produce a multiscale edge map. For training, the authors introduced an annotated dataset (BIPED) specifically designed for edge detection. We perform a brief analysis of the results produced by DexiNed, highlighting its quality but also indicating its limitations. Overall, DexiNed produces state-of-the-art results. |
eu_rights_str_mv | openAccess |
format | article |
id | COLIBRI_3f2d8d64f83c59d301ed8cf6fc01acaa |
identifier_str_mv | Grompone von Gioi, R y Randall, G. "A brief analysis of the dense extreme inception network for edge detection". IPOL. Journal Image Processing On Line. [en línea]. 2022, no 12, pp. 389-403. DOI: 10.5201/ipol.2022.423 2105–1232 10.5201/ipol.2022.423 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/34134 |
publishDate | 2022 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0) |
spelling | Grompone von Gioi Rafael, Université Paris-Saclay, FranceRandall Gregory, Universidad de la República (Uruguay). Facultad de Ingeniería.2022-10-13T12:25:16Z2022-10-13T12:25:16Z2022Grompone von Gioi, R y Randall, G. "A brief analysis of the dense extreme inception network for edge detection". IPOL. Journal Image Processing On Line. [en línea]. 2022, no 12, pp. 389-403. DOI: 10.5201/ipol.2022.4232105–1232https://www.ipol.im/pub/art/2022/423/https://hdl.handle.net/20.500.12008/3413410.5201/ipol.2022.423This work describes DexiNed, a Dense Extreme Inception Network for Edge Detection proposed by Xavier Soria, Edgar Riba and Angel Sappa in [IEEE Winter Conference on Applications of Computer Vision (WACV), 2020]. The network is organized in blocks that extract edges at different resolutions, which are then merged to produce a multiscale edge map. For training, the authors introduced an annotated dataset (BIPED) specifically designed for edge detection. We perform a brief analysis of the results produced by DexiNed, highlighting its quality but also indicating its limitations. Overall, DexiNed produces state-of-the-art results.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2022-10-11T19:07:10Z No. of bitstreams: 2 license_rdf: 23749 bytes, checksum: 6a69abe32f6fabdffa4c61be8f8efebd (MD5) GR22a.pdf: 29240450 bytes, checksum: 9a119fc5dfa819bf65578e48b2f20d8f (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-10-12T18:23:50Z (GMT) No. of bitstreams: 2 license_rdf: 23749 bytes, checksum: 6a69abe32f6fabdffa4c61be8f8efebd (MD5) GR22a.pdf: 29240450 bytes, checksum: 9a119fc5dfa819bf65578e48b2f20d8f (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-10-13T12:25:16Z (GMT). No. of bitstreams: 2 license_rdf: 23749 bytes, checksum: 6a69abe32f6fabdffa4c61be8f8efebd (MD5) GR22a.pdf: 29240450 bytes, checksum: 9a119fc5dfa819bf65578e48b2f20d8f (MD5) Previous issue date: 202215 p.application/pdfenengCentre Borelli, ENS Paris-Saclay; DMI, Universitat de les Illes Balears; Fing, Universidad de la República.IPOL. Journal Image Processing On Line, no 12, Oct 2022, pp. 389-403.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0)Image edge detectionNeural networkHEDXceptionA brief analysis of the dense extreme inception network for edge detectionArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaGrompone von Gioi, RafaelRandall, GregoryProcesamiento de SeñalesTratamiento de ImágenesLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/34134/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/34134/2/license_urla9ac1bac94fe38dbe560422d834a993fMD52license_textlicense_texttext/html; charset=utf-838884http://localhost:8080/xmlui/bitstream/20.500.12008/34134/3/license_text336de3b3b01611d7eba286b6ddc14579MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823749http://localhost:8080/xmlui/bitstream/20.500.12008/34134/4/license_rdf6a69abe32f6fabdffa4c61be8f8efebdMD54ORIGINALGR22a.pdfGR22a.pdfapplication/pdf29240450http://localhost:8080/xmlui/bitstream/20.500.12008/34134/1/GR22a.pdf9a119fc5dfa819bf65578e48b2f20d8fMD5120.500.12008/341342024-07-24 17:25:46.549oai:colibri.udelar.edu.uy:20.500.12008/34134VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:18.071499COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | A brief analysis of the dense extreme inception network for edge detection Grompone von Gioi, Rafael Image edge detection Neural network HED Xception |
status_str | publishedVersion |
title | A brief analysis of the dense extreme inception network for edge detection |
title_full | A brief analysis of the dense extreme inception network for edge detection |
title_fullStr | A brief analysis of the dense extreme inception network for edge detection |
title_full_unstemmed | A brief analysis of the dense extreme inception network for edge detection |
title_short | A brief analysis of the dense extreme inception network for edge detection |
title_sort | A brief analysis of the dense extreme inception network for edge detection |
topic | Image edge detection Neural network HED Xception |
url | https://www.ipol.im/pub/art/2022/423/ https://hdl.handle.net/20.500.12008/34134 |