Brownian motion on stationary random manifolds
Supervisor(es): Ledrappier, François - Martínez, Matilde
Resumen:
Introducimos el concepto de variedad aleatoria estacionaria con el fin de probar en forma unificada resultados sobre variedades con grupo de isometría transitivo, variedades con cociente compacto, y hojas genéricas de foliaciones compactas. Probamos desigualdades relacionando la velocidad de escape del movimiento Browniano con la entropía y el crecimiento de volumen de dichas variedades generalizando trabajos anteriores de Avez, Kaimanovich, y Ledrappier entre otros. En la segunda parte mostramos que la función hoja de una foliación compacta es semicontinua, obteniendo como corolarios el teorema de estabilidad local de Reeb, parte del teorema de estructura local de Epstein para foliaciones por hojas compactas, y el teorema de continuidad de Álvarez y Candel.
2014 | |
TEORÍA ERGÓDICA VARIEDADES ALEATORIAS MOVIMIENTO BROWNIANO ENTROPÍA PROPIEDAD DE LIOUVILLE |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
http://hdl.handle.net/20.500.12008/5423 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
_version_ | 1807522815297978368 |
---|---|
author | Lessa Echeverriarza, Pablo |
author_facet | Lessa Echeverriarza, Pablo |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 4afdbb8c545fd630ea7db775da747b2f ef48816a10f2d45f2e2fee2f478e2faf 9da0b6dfac957114c6a7714714b86306 eb376f60a9bde9597538a3b87489f72c |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/5423/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/5423/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/5423/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/5423/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/5423/1/LESSA.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Lessa Echeverriarza, Pablo, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática. |
dc.creator.advisor.none.fl_str_mv | Ledrappier, François Martínez, Matilde |
dc.creator.none.fl_str_mv | Lessa Echeverriarza, Pablo |
dc.date.accessioned.none.fl_str_mv | 2016-02-10T16:45:50Z |
dc.date.available.none.fl_str_mv | 2016-02-10T16:45:50Z |
dc.date.issued.none.fl_str_mv | 2014 |
dc.description.abstract.none.fl_txt_mv | Introducimos el concepto de variedad aleatoria estacionaria con el fin de probar en forma unificada resultados sobre variedades con grupo de isometría transitivo, variedades con cociente compacto, y hojas genéricas de foliaciones compactas. Probamos desigualdades relacionando la velocidad de escape del movimiento Browniano con la entropía y el crecimiento de volumen de dichas variedades generalizando trabajos anteriores de Avez, Kaimanovich, y Ledrappier entre otros. En la segunda parte mostramos que la función hoja de una foliación compacta es semicontinua, obteniendo como corolarios el teorema de estabilidad local de Reeb, parte del teorema de estructura local de Epstein para foliaciones por hojas compactas, y el teorema de continuidad de Álvarez y Candel. |
dc.format.extent.es.fl_str_mv | 107 p. |
dc.format.mimetype.none.fl_str_mv | aplication/pdf |
dc.identifier.citation.es.fl_str_mv | Lessa Echeverriarza, P. "Brownian motion on stationary random manifolds". Tesis de doctorado. Montevideo : UR. FC-CMAT, 2014. |
dc.identifier.uri.none.fl_str_mv | http://hdl.handle.net/20.500.12008/5423 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | UR. FC-CMAT |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | TEORÍA ERGÓDICA VARIEDADES ALEATORIAS MOVIMIENTO BROWNIANO ENTROPÍA PROPIEDAD DE LIOUVILLE |
dc.title.none.fl_str_mv | Brownian motion on stationary random manifolds |
dc.type.es.fl_str_mv | Tesis de doctorado |
dc.type.none.fl_str_mv | info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | Introducimos el concepto de variedad aleatoria estacionaria con el fin de probar en forma unificada resultados sobre variedades con grupo de isometría transitivo, variedades con cociente compacto, y hojas genéricas de foliaciones compactas. Probamos desigualdades relacionando la velocidad de escape del movimiento Browniano con la entropía y el crecimiento de volumen de dichas variedades generalizando trabajos anteriores de Avez, Kaimanovich, y Ledrappier entre otros. En la segunda parte mostramos que la función hoja de una foliación compacta es semicontinua, obteniendo como corolarios el teorema de estabilidad local de Reeb, parte del teorema de estructura local de Epstein para foliaciones por hojas compactas, y el teorema de continuidad de Álvarez y Candel. |
eu_rights_str_mv | openAccess |
format | doctoralThesis |
id | COLIBRI_3f0aa20f1c70b2a99ad5f3d41ef7931d |
identifier_str_mv | Lessa Echeverriarza, P. "Brownian motion on stationary random manifolds". Tesis de doctorado. Montevideo : UR. FC-CMAT, 2014. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/5423 |
publishDate | 2014 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
spelling | Lessa Echeverriarza, Pablo, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.2016-02-10T16:45:50Z2016-02-10T16:45:50Z2014Lessa Echeverriarza, P. "Brownian motion on stationary random manifolds". Tesis de doctorado. Montevideo : UR. FC-CMAT, 2014.http://hdl.handle.net/20.500.12008/5423Introducimos el concepto de variedad aleatoria estacionaria con el fin de probar en forma unificada resultados sobre variedades con grupo de isometría transitivo, variedades con cociente compacto, y hojas genéricas de foliaciones compactas. Probamos desigualdades relacionando la velocidad de escape del movimiento Browniano con la entropía y el crecimiento de volumen de dichas variedades generalizando trabajos anteriores de Avez, Kaimanovich, y Ledrappier entre otros. En la segunda parte mostramos que la función hoja de una foliación compacta es semicontinua, obteniendo como corolarios el teorema de estabilidad local de Reeb, parte del teorema de estructura local de Epstein para foliaciones por hojas compactas, y el teorema de continuidad de Álvarez y Candel.Submitted by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2016-02-10T16:45:50Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) LESSA.pdf: 1755830 bytes, checksum: eb376f60a9bde9597538a3b87489f72c (MD5)Made available in DSpace on 2016-02-10T16:45:50Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) LESSA.pdf: 1755830 bytes, checksum: eb376f60a9bde9597538a3b87489f72c (MD5) Previous issue date: 2014107 p.aplication/pdfenengUR. FC-CMATLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)TEORÍA ERGÓDICAVARIEDADES ALEATORIASMOVIMIENTO BROWNIANOENTROPÍAPROPIEDAD DE LIOUVILLEBrownian motion on stationary random manifoldsTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaLessa Echeverriarza, PabloLedrappier, FrançoisMartínez, MatildeUniversidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.Doctor en MatemáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/5423/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://localhost:8080/xmlui/bitstream/20.500.12008/5423/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822064http://localhost:8080/xmlui/bitstream/20.500.12008/5423/3/license_textef48816a10f2d45f2e2fee2f478e2fafMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://localhost:8080/xmlui/bitstream/20.500.12008/5423/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALLESSA.pdfLESSA.pdfapplication/pdf1755830http://localhost:8080/xmlui/bitstream/20.500.12008/5423/1/LESSA.pdfeb376f60a9bde9597538a3b87489f72cMD5120.500.12008/54232021-12-09 11:24:25.366oai:colibri.udelar.edu.uy:20.500.12008/5423VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:47.626519COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Brownian motion on stationary random manifolds Lessa Echeverriarza, Pablo TEORÍA ERGÓDICA VARIEDADES ALEATORIAS MOVIMIENTO BROWNIANO ENTROPÍA PROPIEDAD DE LIOUVILLE |
status_str | acceptedVersion |
title | Brownian motion on stationary random manifolds |
title_full | Brownian motion on stationary random manifolds |
title_fullStr | Brownian motion on stationary random manifolds |
title_full_unstemmed | Brownian motion on stationary random manifolds |
title_short | Brownian motion on stationary random manifolds |
title_sort | Brownian motion on stationary random manifolds |
topic | TEORÍA ERGÓDICA VARIEDADES ALEATORIAS MOVIMIENTO BROWNIANO ENTROPÍA PROPIEDAD DE LIOUVILLE |
url | http://hdl.handle.net/20.500.12008/5423 |