Lie algebras of curves and loop-bundles on surfaces
Resumen:
W. Goldman and V. Turaev defined a Lie bialgebra structure on the Z-module generated by free homotopy classes of loops of an oriented surface (i.e. the conjugacy classes of its fundamental group). We develop a generalization of this construction replacing homotopies by thin homotopies, based on the combinatorial approach given by M.Chas. We use it to give a geometric proof of a characterization of simple curves in terms of the Goldman-Turaev bracket, which was conjectured by Chas.
2022 | |
Loop spaces Goldman bracket |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/42367 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
Resultados similares
-
Modelos bidimensionales en gravedad cuántica de lazos
Autor(es):: Rastgoo, Saeed
Fecha de publicación:: (2012) -
A covariant polymerized scalar field in semi-classical loop quantum gravity
Autor(es):: Gambini, Rodolfo H.
Fecha de publicación:: (2022) -
Axisymmetric gravity in real Ashtekar variables: the quantum theory
Autor(es):: Gambini, Rodolfo H.
Fecha de publicación:: (2020) -
Spherically symmetric loop quantum gravity: analysis of improved dynamics
Autor(es):: Gambini, Rodolfo H.
Fecha de publicación:: (2020) -
Smooth extensions of black holes in loop quantum gravity
Autor(es):: Gambini, Rodolfo H.
Fecha de publicación:: (2023)