Multi agent collaboration using distributed value functions
Resumen:
In this paper we present the use of distributed value function techniques to reach collaboration in a multiagent system. We apply this method in two different simulation environments: a mobile robot planning/searching task and an intelligent traffic system in an urban environment. In the case of the intelligent traffic system, results show an improvement with respect to a standard fix-time controller and local adaptive controllers. Trajectories for optimal search in an obstacle environment are obtained in the mobile robot case. Some variations to the actual algorithm are pointed out to suit our cases. We conclude discussing our future work.
2000 | |
Reinforcement learning Distributed system Mobile robot Traffic control |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/20811 | |
Acceso abierto |
Resultados similares
-
Multi-robot cooperative systems for exploration : advances in dealing with constrained communication environments
Autor(es):: Benavides Olivera, Facundo
Fecha de publicación:: (2016) -
Deep reinforcement learning and graph neural networks for efficient resource allocation in 5G networks
Autor(es):: Randall, Martín
Fecha de publicación:: (2022) -
Robótica educativa en Uruguay : de la mano del Robot Butiá
Autor(es):: Benavides Olivera, Facundo
Fecha de publicación:: (2016) -
An Auto-Adaptive Multi-Objective Strategy for Multi-Robot Exploration of Constrained-Communication Environments
Autor(es):: Benavides Olivera, Facundo
Fecha de publicación:: (2019) -
Distribution network loss allocations with distributed generation using nodal prices
Autor(es):: Vignolo, Mario
Fecha de publicación:: (2004)