GROWS - Improving decentralized resource allocation in wireless networks through graph neural networks

Randall, Martín - Belzarena, Pablo - Larroca, Federico - Casas, Pedro

Resumen:

Wireless networks have progressed exponentially over the last decade, and modern wireless networking is today a complex to manage tangle, serving an ever-growing number of end-devices through a plethora of technologies. The broad range of use cases supported by wireless networking requires the conception of smarter resource allocation approaches, which make the most of the scarce wireless resources. We address the problem of user association (UA) in wireless systems. We consider a particularly challenging setup for UA, represented by modern ad-hoc networks such as FANETS, where connectivity is provided by a group of unmanned aerial vehicles (UAVs). We introduce GROWS, a Deep Reinforcement Learning (DRL) driven approach to efficiently connect wireless users to the network, leveraging Graph Neural Networks (GNNs) to better model the function of expected rewards. While GROWS is not tied to any specific wireless technology, the decentralized nature of FANETS and the lack of a pre-existing infrastructure makes a perfect case study. We show that GROWS learns UA policies for FANETS which largely outperform currently used association heuristics, realizing up to 20% higher throughput utility while reducing user rejection by more than 90%, and that these policies are robust to concept drifts in the expected load of traffic, maintaining performance improvements for previously unseen traffic loads.


Detalles Bibliográficos
2022
Este trabajo se encuentra parcialmente financiado por la Agencia Nacional de Investigacion e Innovación (ANII) a través del proyecto "Inteligencia Artificial para redes 5G" (FMV 1 2019 1 155700), así como por el proyecto Austrian FFG ICT-of-the-Future DynAISEC (Adaptive AI/ML for Dynamic Cybersecurity Systems).
Beca doctorado ANII
User Association
Wireless Networks
FANETS
Graph Neural Networks
Deep Reinforcement Learning
Computing methodologies
Machine learning
Learning paradigms
Reinforcement learning
Networks
Network types
Wireless access networks
Inglés
Universidad de la República
COLIBRI
https://dl.acm.org/doi/10.1145/3565473.3569189
https://dl.acm.org/doi/proceedings/10.1145/3565473
https://hdl.handle.net/20.500.12008/35269
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522899626557440
author Randall, Martín
author2 Belzarena, Pablo
Larroca, Federico
Casas, Pedro
author2_role author
author
author
author_facet Randall, Martín
Belzarena, Pablo
Larroca, Federico
Casas, Pedro
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
f226eb34f5dd7a3cd4f3b48b5d833ed1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/35269/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/35269/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/35269/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/35269/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/35269/1/RBLC22.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Randall Martín, Universidad de la República (Uruguay). Facultad de Ingeniería.
Belzarena Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Larroca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.
Casas Pedro, Austrian Institute of Technology Vienna, Austria
dc.creator.none.fl_str_mv Randall, Martín
Belzarena, Pablo
Larroca, Federico
Casas, Pedro
dc.date.accessioned.none.fl_str_mv 2022-12-15T12:39:28Z
dc.date.available.none.fl_str_mv 2022-12-15T12:39:28Z
dc.date.issued.none.fl_str_mv 2022
dc.description.abstract.none.fl_txt_mv Wireless networks have progressed exponentially over the last decade, and modern wireless networking is today a complex to manage tangle, serving an ever-growing number of end-devices through a plethora of technologies. The broad range of use cases supported by wireless networking requires the conception of smarter resource allocation approaches, which make the most of the scarce wireless resources. We address the problem of user association (UA) in wireless systems. We consider a particularly challenging setup for UA, represented by modern ad-hoc networks such as FANETS, where connectivity is provided by a group of unmanned aerial vehicles (UAVs). We introduce GROWS, a Deep Reinforcement Learning (DRL) driven approach to efficiently connect wireless users to the network, leveraging Graph Neural Networks (GNNs) to better model the function of expected rewards. While GROWS is not tied to any specific wireless technology, the decentralized nature of FANETS and the lack of a pre-existing infrastructure makes a perfect case study. We show that GROWS learns UA policies for FANETS which largely outperform currently used association heuristics, realizing up to 20% higher throughput utility while reducing user rejection by more than 90%, and that these policies are robust to concept drifts in the expected load of traffic, maintaining performance improvements for previously unseen traffic loads.
dc.description.es.fl_txt_mv Presentado y publicado en GNNet 22 : Proceedings of the 1st International Workshop on Graph Neural Networking, Roma, Italy, 9 dec. 2022, pp. 24-29.
dc.description.sponsorship.none.fl_txt_mv Este trabajo se encuentra parcialmente financiado por la Agencia Nacional de Investigacion e Innovación (ANII) a través del proyecto "Inteligencia Artificial para redes 5G" (FMV 1 2019 1 155700), así como por el proyecto Austrian FFG ICT-of-the-Future DynAISEC (Adaptive AI/ML for Dynamic Cybersecurity Systems).
Beca doctorado ANII
dc.format.extent.es.fl_str_mv 6 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Randall, M., Belzarena, P., Larroca, F. y otros. GROWS - Improving decentralized resource allocation in wireless networks through graph neural networks [Preprint]. Publicado en: GNNet 22 : Proceedings of the 1st International Workshop on Graph Neural Networking, Roma, Italy, 9 dec., pp. 24-29. DOI: 10.1145/3565473.3569189. ISBN:978-1-4503-9933-3.
dc.identifier.uri.none.fl_str_mv https://dl.acm.org/doi/10.1145/3565473.3569189
https://dl.acm.org/doi/proceedings/10.1145/3565473
https://hdl.handle.net/20.500.12008/35269
dc.language.iso.none.fl_str_mv en
eng
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv User Association
Wireless Networks
FANETS
Graph Neural Networks
Deep Reinforcement Learning
Computing methodologies
Machine learning
Learning paradigms
Reinforcement learning
Networks
Network types
Wireless access networks
dc.title.none.fl_str_mv GROWS - Improving decentralized resource allocation in wireless networks through graph neural networks
dc.type.es.fl_str_mv Preprint
dc.type.none.fl_str_mv info:eu-repo/semantics/preprint
dc.type.version.none.fl_str_mv info:eu-repo/semantics/submittedVersion
description Presentado y publicado en GNNet 22 : Proceedings of the 1st International Workshop on Graph Neural Networking, Roma, Italy, 9 dec. 2022, pp. 24-29.
eu_rights_str_mv openAccess
format preprint
id COLIBRI_3cec14eda9a99565614ada793b8dda57
identifier_str_mv Randall, M., Belzarena, P., Larroca, F. y otros. GROWS - Improving decentralized resource allocation in wireless networks through graph neural networks [Preprint]. Publicado en: GNNet 22 : Proceedings of the 1st International Workshop on Graph Neural Networking, Roma, Italy, 9 dec., pp. 24-29. DOI: 10.1145/3565473.3569189. ISBN:978-1-4503-9933-3.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/35269
publishDate 2022
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Randall Martín, Universidad de la República (Uruguay). Facultad de Ingeniería.Belzarena Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.Larroca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.Casas Pedro, Austrian Institute of Technology Vienna, Austria2022-12-15T12:39:28Z2022-12-15T12:39:28Z2022Randall, M., Belzarena, P., Larroca, F. y otros. GROWS - Improving decentralized resource allocation in wireless networks through graph neural networks [Preprint]. Publicado en: GNNet 22 : Proceedings of the 1st International Workshop on Graph Neural Networking, Roma, Italy, 9 dec., pp. 24-29. DOI: 10.1145/3565473.3569189. ISBN:978-1-4503-9933-3.https://dl.acm.org/doi/10.1145/3565473.3569189https://dl.acm.org/doi/proceedings/10.1145/3565473https://hdl.handle.net/20.500.12008/35269Presentado y publicado en GNNet 22 : Proceedings of the 1st International Workshop on Graph Neural Networking, Roma, Italy, 9 dec. 2022, pp. 24-29.Wireless networks have progressed exponentially over the last decade, and modern wireless networking is today a complex to manage tangle, serving an ever-growing number of end-devices through a plethora of technologies. The broad range of use cases supported by wireless networking requires the conception of smarter resource allocation approaches, which make the most of the scarce wireless resources. We address the problem of user association (UA) in wireless systems. We consider a particularly challenging setup for UA, represented by modern ad-hoc networks such as FANETS, where connectivity is provided by a group of unmanned aerial vehicles (UAVs). We introduce GROWS, a Deep Reinforcement Learning (DRL) driven approach to efficiently connect wireless users to the network, leveraging Graph Neural Networks (GNNs) to better model the function of expected rewards. While GROWS is not tied to any specific wireless technology, the decentralized nature of FANETS and the lack of a pre-existing infrastructure makes a perfect case study. We show that GROWS learns UA policies for FANETS which largely outperform currently used association heuristics, realizing up to 20% higher throughput utility while reducing user rejection by more than 90%, and that these policies are robust to concept drifts in the expected load of traffic, maintaining performance improvements for previously unseen traffic loads.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2022-12-12T22:49:17Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) RBLC22.pdf: 399701 bytes, checksum: f226eb34f5dd7a3cd4f3b48b5d833ed1 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-12-14T20:08:03Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) RBLC22.pdf: 399701 bytes, checksum: f226eb34f5dd7a3cd4f3b48b5d833ed1 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-12-15T12:39:28Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) RBLC22.pdf: 399701 bytes, checksum: f226eb34f5dd7a3cd4f3b48b5d833ed1 (MD5) Previous issue date: 2022Este trabajo se encuentra parcialmente financiado por la Agencia Nacional de Investigacion e Innovación (ANII) a través del proyecto "Inteligencia Artificial para redes 5G" (FMV 1 2019 1 155700), así como por el proyecto Austrian FFG ICT-of-the-Future DynAISEC (Adaptive AI/ML for Dynamic Cybersecurity Systems).Beca doctorado ANII6 p.application/pdfenengLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)User AssociationWireless NetworksFANETSGraph Neural NetworksDeep Reinforcement LearningComputing methodologiesMachine learningLearning paradigmsReinforcement learningNetworksNetwork typesWireless access networksGROWS - Improving decentralized resource allocation in wireless networks through graph neural networksPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaRandall, MartínBelzarena, PabloLarroca, FedericoCasas, PedroTelecomunicacionesAnálisis de Redes, Tráfico y Estadísticas de ServiciosLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/35269/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/35269/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/35269/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/35269/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALRBLC22.pdfRBLC22.pdfapplication/pdf399701http://localhost:8080/xmlui/bitstream/20.500.12008/35269/1/RBLC22.pdff226eb34f5dd7a3cd4f3b48b5d833ed1MD5120.500.12008/352692024-07-24 17:25:46.653oai:colibri.udelar.edu.uy:20.500.12008/35269VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:18.881419COLIBRI - Universidad de la Repúblicafalse
spellingShingle GROWS - Improving decentralized resource allocation in wireless networks through graph neural networks
Randall, Martín
User Association
Wireless Networks
FANETS
Graph Neural Networks
Deep Reinforcement Learning
Computing methodologies
Machine learning
Learning paradigms
Reinforcement learning
Networks
Network types
Wireless access networks
status_str submittedVersion
title GROWS - Improving decentralized resource allocation in wireless networks through graph neural networks
title_full GROWS - Improving decentralized resource allocation in wireless networks through graph neural networks
title_fullStr GROWS - Improving decentralized resource allocation in wireless networks through graph neural networks
title_full_unstemmed GROWS - Improving decentralized resource allocation in wireless networks through graph neural networks
title_short GROWS - Improving decentralized resource allocation in wireless networks through graph neural networks
title_sort GROWS - Improving decentralized resource allocation in wireless networks through graph neural networks
topic User Association
Wireless Networks
FANETS
Graph Neural Networks
Deep Reinforcement Learning
Computing methodologies
Machine learning
Learning paradigms
Reinforcement learning
Networks
Network types
Wireless access networks
url https://dl.acm.org/doi/10.1145/3565473.3569189
https://dl.acm.org/doi/proceedings/10.1145/3565473
https://hdl.handle.net/20.500.12008/35269