An experimental comparison of multi-view stereo approaches on satellite images

Gómez, Alvaro - Randall, Gregory - Facciolo, Gabriele - Grompone von Gioi, Rafael

Resumen:

Different methods can be applied to satellite images to derive an altitude map from a set of images. In this article we evaluate a set of representative methods from different approaches. We consider true multi-view stereo methods as well as pair-wise ones, classic methods and deep learning based ones, methods already in use on satellite images and others that were originally devised for close range imaging and are adapted to satellite imagery. While deep learning (DL) methods have taken over multi-view stereo reconstruction in the last years, this tendency has not fully reached satellite stereo pipelines that still largely rely on pair-wise classic algorithms. For the comparison, we set-up a framework that allows to interface a DL-based stereo method taken from the computer vision literature with a satellite stereo pipeline. For multi-view stereo algorithms we build on a recently proposed framework originally devised to apply Colmap method to satellite images. Methods are compared on several datasets that include sets of images taken within a few days and sets of images taken months apart. Results show that DL methods have, in general, a good generalization power. In particular, the use of the GANet DL method as the matching step in a pair-wise stereo pipeline is promising as it already performs better than the classic counterpart, even without a specific training.


Detalles Bibliográficos
2022
Deep learning
Training
Computer vision
Satellites
Pipelines
Imaging
Image reconstruction
Remote Sensing Stereo Processing
Inglés
Universidad de la República
COLIBRI
https://ieeexplore.ieee.org/document/9706849
https://openaccess.thecvf.com/content/WACV2022/html/Gomez_An_Experimental_Comparison_of_Multi-View_Stereo_Approaches_on_Satellite_Images_WACV_2022_paper.html
https://hdl.handle.net/20.500.12008/35931
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522899734560768
author Gómez, Alvaro
author2 Randall, Gregory
Facciolo, Gabriele
Grompone von Gioi, Rafael
author2_role author
author
author
author_facet Gómez, Alvaro
Randall, Gregory
Facciolo, Gabriele
Grompone von Gioi, Rafael
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
5496fc0e5fd48f50fe829b9d18359908
1996b8461bc290aef6a27d78c67b6b52
98956efea5d46289d81f65c2a49aef17
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/35931/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/35931/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/35931/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/35931/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/35931/1/GRFG22.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Gómez Alvaro, Universidad de la República (Uruguay). Facultad de Ingeniería.
Randall Gregory, Universidad de la República (Uruguay). Facultad de Ingeniería.
Facciolo Gabriele, Centre Borelli ENS Paris-Saclay, France
Grompone von Gioi Rafael, Centre Borelli ENS Paris-Saclay, France
dc.creator.none.fl_str_mv Gómez, Alvaro
Randall, Gregory
Facciolo, Gabriele
Grompone von Gioi, Rafael
dc.date.accessioned.none.fl_str_mv 2023-02-16T16:34:29Z
dc.date.available.none.fl_str_mv 2023-02-16T16:34:29Z
dc.date.issued.none.fl_str_mv 2022
dc.description.abstract.none.fl_txt_mv Different methods can be applied to satellite images to derive an altitude map from a set of images. In this article we evaluate a set of representative methods from different approaches. We consider true multi-view stereo methods as well as pair-wise ones, classic methods and deep learning based ones, methods already in use on satellite images and others that were originally devised for close range imaging and are adapted to satellite imagery. While deep learning (DL) methods have taken over multi-view stereo reconstruction in the last years, this tendency has not fully reached satellite stereo pipelines that still largely rely on pair-wise classic algorithms. For the comparison, we set-up a framework that allows to interface a DL-based stereo method taken from the computer vision literature with a satellite stereo pipeline. For multi-view stereo algorithms we build on a recently proposed framework originally devised to apply Colmap method to satellite images. Methods are compared on several datasets that include sets of images taken within a few days and sets of images taken months apart. Results show that DL methods have, in general, a good generalization power. In particular, the use of the GANet DL method as the matching step in a pair-wise stereo pipeline is promising as it already performs better than the classic counterpart, even without a specific training.
dc.format.extent.es.fl_str_mv 10 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Gómez, A., Randall, G., Facciolo, G. y otros. An experimental comparison of multi-view stereo approaches on satellite images [en línea]. EN: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3-8 jan. 2022, pp. 707-716. DOI: 10.1109/WACV51458.2022.00078.
dc.identifier.doi.none.fl_str_mv 10.1109/WACV51458.2022.00078
dc.identifier.uri.none.fl_str_mv https://ieeexplore.ieee.org/document/9706849
https://openaccess.thecvf.com/content/WACV2022/html/Gomez_An_Experimental_Comparison_of_Multi-View_Stereo_Approaches_on_Satellite_Images_WACV_2022_paper.html
https://hdl.handle.net/20.500.12008/35931
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv IEEE
dc.relation.ispartof.es.fl_str_mv 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3-8 jan. 2022, pp. 707-716.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Deep learning
Training
Computer vision
Satellites
Pipelines
Imaging
Image reconstruction
Remote Sensing Stereo Processing
dc.title.none.fl_str_mv An experimental comparison of multi-view stereo approaches on satellite images
dc.type.es.fl_str_mv Ponencia
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Different methods can be applied to satellite images to derive an altitude map from a set of images. In this article we evaluate a set of representative methods from different approaches. We consider true multi-view stereo methods as well as pair-wise ones, classic methods and deep learning based ones, methods already in use on satellite images and others that were originally devised for close range imaging and are adapted to satellite imagery. While deep learning (DL) methods have taken over multi-view stereo reconstruction in the last years, this tendency has not fully reached satellite stereo pipelines that still largely rely on pair-wise classic algorithms. For the comparison, we set-up a framework that allows to interface a DL-based stereo method taken from the computer vision literature with a satellite stereo pipeline. For multi-view stereo algorithms we build on a recently proposed framework originally devised to apply Colmap method to satellite images. Methods are compared on several datasets that include sets of images taken within a few days and sets of images taken months apart. Results show that DL methods have, in general, a good generalization power. In particular, the use of the GANet DL method as the matching step in a pair-wise stereo pipeline is promising as it already performs better than the classic counterpart, even without a specific training.
eu_rights_str_mv openAccess
format conferenceObject
id COLIBRI_3af9524c630e078d11cc537899a0863a
identifier_str_mv Gómez, A., Randall, G., Facciolo, G. y otros. An experimental comparison of multi-view stereo approaches on satellite images [en línea]. EN: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3-8 jan. 2022, pp. 707-716. DOI: 10.1109/WACV51458.2022.00078.
10.1109/WACV51458.2022.00078
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/35931
publishDate 2022
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Gómez Alvaro, Universidad de la República (Uruguay). Facultad de Ingeniería.Randall Gregory, Universidad de la República (Uruguay). Facultad de Ingeniería.Facciolo Gabriele, Centre Borelli ENS Paris-Saclay, FranceGrompone von Gioi Rafael, Centre Borelli ENS Paris-Saclay, France2023-02-16T16:34:29Z2023-02-16T16:34:29Z2022Gómez, A., Randall, G., Facciolo, G. y otros. An experimental comparison of multi-view stereo approaches on satellite images [en línea]. EN: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3-8 jan. 2022, pp. 707-716. DOI: 10.1109/WACV51458.2022.00078.https://ieeexplore.ieee.org/document/9706849https://openaccess.thecvf.com/content/WACV2022/html/Gomez_An_Experimental_Comparison_of_Multi-View_Stereo_Approaches_on_Satellite_Images_WACV_2022_paper.htmlhttps://hdl.handle.net/20.500.12008/3593110.1109/WACV51458.2022.00078Different methods can be applied to satellite images to derive an altitude map from a set of images. In this article we evaluate a set of representative methods from different approaches. We consider true multi-view stereo methods as well as pair-wise ones, classic methods and deep learning based ones, methods already in use on satellite images and others that were originally devised for close range imaging and are adapted to satellite imagery. While deep learning (DL) methods have taken over multi-view stereo reconstruction in the last years, this tendency has not fully reached satellite stereo pipelines that still largely rely on pair-wise classic algorithms. For the comparison, we set-up a framework that allows to interface a DL-based stereo method taken from the computer vision literature with a satellite stereo pipeline. For multi-view stereo algorithms we build on a recently proposed framework originally devised to apply Colmap method to satellite images. Methods are compared on several datasets that include sets of images taken within a few days and sets of images taken months apart. Results show that DL methods have, in general, a good generalization power. In particular, the use of the GANet DL method as the matching step in a pair-wise stereo pipeline is promising as it already performs better than the classic counterpart, even without a specific training.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-02-15T22:28:33Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GRFG22.pdf: 10163407 bytes, checksum: 98956efea5d46289d81f65c2a49aef17 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-02-16T16:09:16Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GRFG22.pdf: 10163407 bytes, checksum: 98956efea5d46289d81f65c2a49aef17 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-02-16T16:34:29Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GRFG22.pdf: 10163407 bytes, checksum: 98956efea5d46289d81f65c2a49aef17 (MD5) Previous issue date: 202210 p.application/pdfenengIEEE2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3-8 jan. 2022, pp. 707-716.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Deep learningTrainingComputer visionSatellitesPipelinesImagingImage reconstructionRemote Sensing Stereo ProcessingAn experimental comparison of multi-view stereo approaches on satellite imagesPonenciainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaGómez, AlvaroRandall, GregoryFacciolo, GabrieleGrompone von Gioi, RafaelProcesamiento de SeñalesTratamiento de ImágenesLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/35931/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/35931/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838777http://localhost:8080/xmlui/bitstream/20.500.12008/35931/3/license_text5496fc0e5fd48f50fe829b9d18359908MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/35931/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALGRFG22.pdfGRFG22.pdfapplication/pdf10163407http://localhost:8080/xmlui/bitstream/20.500.12008/35931/1/GRFG22.pdf98956efea5d46289d81f65c2a49aef17MD5120.500.12008/359312024-07-24 17:25:46.753oai:colibri.udelar.edu.uy:20.500.12008/35931VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:19.255474COLIBRI - Universidad de la Repúblicafalse
spellingShingle An experimental comparison of multi-view stereo approaches on satellite images
Gómez, Alvaro
Deep learning
Training
Computer vision
Satellites
Pipelines
Imaging
Image reconstruction
Remote Sensing Stereo Processing
status_str publishedVersion
title An experimental comparison of multi-view stereo approaches on satellite images
title_full An experimental comparison of multi-view stereo approaches on satellite images
title_fullStr An experimental comparison of multi-view stereo approaches on satellite images
title_full_unstemmed An experimental comparison of multi-view stereo approaches on satellite images
title_short An experimental comparison of multi-view stereo approaches on satellite images
title_sort An experimental comparison of multi-view stereo approaches on satellite images
topic Deep learning
Training
Computer vision
Satellites
Pipelines
Imaging
Image reconstruction
Remote Sensing Stereo Processing
url https://ieeexplore.ieee.org/document/9706849
https://openaccess.thecvf.com/content/WACV2022/html/Gomez_An_Experimental_Comparison_of_Multi-View_Stereo_Approaches_on_Satellite_Images_WACV_2022_paper.html
https://hdl.handle.net/20.500.12008/35931