Group sparse Lasso for cognitive network sensing robust to model uncertainties and outliers
Resumen:
To account for variations in the frequency, time, and space dimensions, dynamic re-use of licensed bands under the cognitive radio (CR) paradigm calls for innovative network-level sensing algorithms for multi-dimensional spectrum opportunity awareness. Toward this direction, the present paper develops a collaborative scheme whereby CRs cooperate to localize active primary user (PU) transmitters and reconstruct a power spectral density (PSD) map portraying the spatial distribution of power across the monitored area per frequency band and channel coherence interval. The sensing scheme is based on a parsimonious model that accounts for two forms of sparsity: one due to the narrow-band nature of transmit-PSDs compared to the large portion of spectrum that a CR can sense, and another one emerging when adopting a spatial grid of candidate PU locations. Capitalizing on this dual sparsity, an estimator of the model coefficients is obtained based on the group sparse least-absolute-shrinkage-and-selection operator (GS-Lasso). A novel reduced-complexity GS-Lasso solver is developed by resorting to the alternating direction method of multipliers (ADMoM). Robust versions of this GS-Lasso estimator are also introduced using a GS total least-squares (TLS) approach to cope with both uncertainty in the regression matrices, arising due to inaccurate channel estimation and grid-mismatch effects, and unexpected model outliers. In spite of the non-convexity of the GS-TLS criterion, the novel robust algorithm has guaranteed convergence to (at least) a local optimum. The analytical findings are corroborated by numerical tests
2012 | |
Spectrum sensing Spectrum cartography Sparse linear regression Total least-squares Outliers Sistemas y Control |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/41145
https://doi.org/10.1016/j.phycom.2011.07.005 |
|
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522937911115776 |
---|---|
author | Dall’Anese, Emiliano |
author2 | Bazerque, Juan Andrés Giannakis, Georgios B |
author2_role | author author |
author_facet | Dall’Anese, Emiliano Bazerque, Juan Andrés Giannakis, Georgios B |
author_role | author |
bitstream.checksum.fl_str_mv | 7f2e2c17ef6585de66da58d1bfa8b5e1 9833653f73f7853880c94a6fead477b1 4afdbb8c545fd630ea7db775da747b2f 9da0b6dfac957114c6a7714714b86306 93600b1fe76cc9af6b4f1c63d56540f8 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/41145/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/41145/2/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/41145/3/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/41145/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/41145/1/DBG12.pdf |
collection | COLIBRI |
dc.creator.none.fl_str_mv | Dall’Anese, Emiliano Bazerque, Juan Andrés Giannakis, Georgios B |
dc.date.accessioned.none.fl_str_mv | 2023-11-14T17:04:30Z |
dc.date.available.none.fl_str_mv | 2023-11-14T17:04:30Z |
dc.date.issued.es.fl_str_mv | 2012 |
dc.date.submitted.es.fl_str_mv | 20231114 |
dc.description.abstract.none.fl_txt_mv | To account for variations in the frequency, time, and space dimensions, dynamic re-use of licensed bands under the cognitive radio (CR) paradigm calls for innovative network-level sensing algorithms for multi-dimensional spectrum opportunity awareness. Toward this direction, the present paper develops a collaborative scheme whereby CRs cooperate to localize active primary user (PU) transmitters and reconstruct a power spectral density (PSD) map portraying the spatial distribution of power across the monitored area per frequency band and channel coherence interval. The sensing scheme is based on a parsimonious model that accounts for two forms of sparsity: one due to the narrow-band nature of transmit-PSDs compared to the large portion of spectrum that a CR can sense, and another one emerging when adopting a spatial grid of candidate PU locations. Capitalizing on this dual sparsity, an estimator of the model coefficients is obtained based on the group sparse least-absolute-shrinkage-and-selection operator (GS-Lasso). A novel reduced-complexity GS-Lasso solver is developed by resorting to the alternating direction method of multipliers (ADMoM). Robust versions of this GS-Lasso estimator are also introduced using a GS total least-squares (TLS) approach to cope with both uncertainty in the regression matrices, arising due to inaccurate channel estimation and grid-mismatch effects, and unexpected model outliers. In spite of the non-convexity of the GS-TLS criterion, the novel robust algorithm has guaranteed convergence to (at least) a local optimum. The analytical findings are corroborated by numerical tests |
dc.description.es.fl_txt_mv | Postprint |
dc.identifier.citation.es.fl_str_mv | Dall’Anese, E, Bazerque, J, Giannakis, G. "Group sparse Lasso for cognitive network sensing robust to model uncertainties and outliers" Physical Communication, 2012, v. 5, n. 2, pp. 161-172. https://doi.org/10.1016/j.phycom.2011.07.005 |
dc.identifier.doi.es.fl_str_mv | https://doi.org/10.1016/j.phycom.2011.07.005 |
dc.identifier.issn.es.fl_str_mv | 1874-4907 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/41145 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | Udelar.FI |
dc.relation.ispartof.es.fl_str_mv | Physical Communication, 2012, v. 5, n. 2 |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Spectrum sensing Spectrum cartography Sparse linear regression Total least-squares Outliers |
dc.subject.other.es.fl_str_mv | Sistemas y Control |
dc.title.none.fl_str_mv | Group sparse Lasso for cognitive network sensing robust to model uncertainties and outliers |
dc.type.es.fl_str_mv | Artículo |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Postprint |
eu_rights_str_mv | openAccess |
format | article |
id | COLIBRI_3ac6d8c848aafae2d13334b94aeec8e8 |
identifier_str_mv | Dall’Anese, E, Bazerque, J, Giannakis, G. "Group sparse Lasso for cognitive network sensing robust to model uncertainties and outliers" Physical Communication, 2012, v. 5, n. 2, pp. 161-172. https://doi.org/10.1016/j.phycom.2011.07.005 1874-4907 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/41145 |
publishDate | 2012 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | 2023-11-14T17:04:30Z2023-11-14T17:04:30Z201220231114Dall’Anese, E, Bazerque, J, Giannakis, G. "Group sparse Lasso for cognitive network sensing robust to model uncertainties and outliers" Physical Communication, 2012, v. 5, n. 2, pp. 161-172. https://doi.org/10.1016/j.phycom.2011.07.0051874-4907https://hdl.handle.net/20.500.12008/41145https://doi.org/10.1016/j.phycom.2011.07.005PostprintTo account for variations in the frequency, time, and space dimensions, dynamic re-use of licensed bands under the cognitive radio (CR) paradigm calls for innovative network-level sensing algorithms for multi-dimensional spectrum opportunity awareness. Toward this direction, the present paper develops a collaborative scheme whereby CRs cooperate to localize active primary user (PU) transmitters and reconstruct a power spectral density (PSD) map portraying the spatial distribution of power across the monitored area per frequency band and channel coherence interval. The sensing scheme is based on a parsimonious model that accounts for two forms of sparsity: one due to the narrow-band nature of transmit-PSDs compared to the large portion of spectrum that a CR can sense, and another one emerging when adopting a spatial grid of candidate PU locations. Capitalizing on this dual sparsity, an estimator of the model coefficients is obtained based on the group sparse least-absolute-shrinkage-and-selection operator (GS-Lasso). A novel reduced-complexity GS-Lasso solver is developed by resorting to the alternating direction method of multipliers (ADMoM). Robust versions of this GS-Lasso estimator are also introduced using a GS total least-squares (TLS) approach to cope with both uncertainty in the regression matrices, arising due to inaccurate channel estimation and grid-mismatch effects, and unexpected model outliers. In spite of the non-convexity of the GS-TLS criterion, the novel robust algorithm has guaranteed convergence to (at least) a local optimum. The analytical findings are corroborated by numerical testsMade available in DSpace on 2023-11-14T17:04:30Z (GMT). No. of bitstreams: 5 DBG12.pdf: 926594 bytes, checksum: 93600b1fe76cc9af6b4f1c63d56540f8 (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4194 bytes, checksum: 7f2e2c17ef6585de66da58d1bfa8b5e1 (MD5) Previous issue date: 2012enengUdelar.FIPhysical Communication, 2012, v. 5, n. 2Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Spectrum sensingSpectrum cartographySparse linear regressionTotal least-squaresOutliersSistemas y ControlGroup sparse Lasso for cognitive network sensing robust to model uncertainties and outliersArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaDall’Anese, EmilianoBazerque, Juan AndrésGiannakis, Georgios BLICENSElicense.txttext/plain4194http://localhost:8080/xmlui/bitstream/20.500.12008/41145/5/license.txt7f2e2c17ef6585de66da58d1bfa8b5e1MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/41145/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/41145/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/41145/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALDBG12.pdfapplication/pdf926594http://localhost:8080/xmlui/bitstream/20.500.12008/41145/1/DBG12.pdf93600b1fe76cc9af6b4f1c63d56540f8MD5120.500.12008/411452023-11-14 14:04:30.772oai:colibri.udelar.edu.uy:20.500.12008/41145VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIAoKQWNlcHRhbmRvIGVsIGF1dG9yIGVzdG9zIHTvv71ybWlub3MgeSBjb25kaWNpb25lcyBkZSBkZXDvv71zaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcO+/vWJsaWNhIHByb2NlZGVy77+9IGE6ICAKCmEpIGFyY2hpdmFyIG3vv71zIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nvv71uCmIpIGNvbnZlcnRpciBsYSBvYnJhIGEgb3Ryb3MgZm9ybWF0b3Mgc2kgZnVlcmEgbmVjZXNhcmlvICBwYXJhIGZhY2lsaXRhciBzdSBwcmVzZXJ2YWNp77+9biB5IGFjY2VzaWJpbGlkYWQgc2luIGFsdGVyYXIgc3UgY29udGVuaWRvLgpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4KCkVsIGF1dG9yIGFzZWd1cmEgcXVlIGxhIG9icmEgbm8gaW5mcmlnZSBuaW5n77+9biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdO+/vSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZW4gZWwgdGV4dG8gbyBjb250ZW5pZG8gZGVsIGRvY3VtZW50byBkZXBvc2l0YWRvIGVuIGVsIFJlcG9zaXRvcmlvLgoKRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLvv70gcmVzcG9uc2FibGUgZGVsIGNvbnRlbmlkbyBkZSBsb3MgZG9jdW1lbnRvcyBxdWUgZGVwb3NpdGEuIExhIFVERUxBUiBubyBzZXLvv70gcmVzcG9uc2FibGUgcG9yIGxhcyBldmVudHVhbGVzIHZpb2xhY2lvbmVzIGFsIGRlcmVjaG8gZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIHF1ZSBwdWVkYSBpbmN1cnJpciBlbCBhdXRvci4KCkFudGUgY3VhbHF1aWVyIGRlbnVuY2lhIGRlIHZpb2xhY2nvv71uIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFy77+9IHRvZGFzIGxhcyBtZWRpZGFzIG5lY2VzYXJpYXMgcGFyYSBldml0YXIgbGEgY29udGludWFjae+/vW4gZGUgZGljaGEgaW5mcmFjY2nvv71uLCBsYXMgcXVlIHBvZHLvv71uIGluY2x1aXIgZWwgcmV0aXJvIGRlbCBhY2Nlc28gYSBsb3MgY29udGVuaWRvcyB5L28gbWV0YWRhdG9zIGRlbCBkb2N1bWVudG8gcmVzcGVjdGl2by4KCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLgoKQXRyaWJ1Y2nvv71uIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIC0gQnktU0EpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgcGVybyBsYSBkaXN0cmlidWNp77+9biBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTvv71udGljYSBhIGxhIGRlIGxhIG9icmEgb3JpZ2luYWwsIHJlY29ub2NpZW5kbyBhIGxvcyBhdXRvcmVzLgoKQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwgKENDIC0gQnktTkMpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBzaWVtcHJlIHkgY3VhbmRvIGVzb3MgdXNvcyBubyB0ZW5nYW4gZmluZXMgY29tZXJjaWFsZXMsIHJlY29ub2NpZW5kbyBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIO+/vSBCeS1OQy1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIHNpZW1wcmUgeSBjdWFuZG8gZXNvcyB1c29zIG5vIHRlbmdhbiBmaW5lcyBjb21lcmNpYWxlcyB5IGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgc2UgaGFnYSBtZWRpYW50ZSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjae+/vW4g77+9IE5vIENvbWVyY2lhbCDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1OQy1ORCk6IFBlcm1pdGUgdXNhciBsYSBvYnJhLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMgeSBubyBzZSBwZXJtaXRlIHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4KCkN1YW5kbyBzZSBzZWxlY2Npb25lIHVuYSBsaWNlbmNpYSBxdWUgaGFiaWxpdGUgdXNvcyBjb21lcmNpYWxlcywgZWwgZGVw77+9c2l0byBkZWJlcu+/vSBzZXIgYWNvbXBh77+9YWRvIGRlbCBhdmFsIGRlbCBqZXJhcmNhIG3vv714aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCgoKCgoKCgoKUniversidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:36.955097COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Group sparse Lasso for cognitive network sensing robust to model uncertainties and outliers Dall’Anese, Emiliano Spectrum sensing Spectrum cartography Sparse linear regression Total least-squares Outliers Sistemas y Control |
status_str | publishedVersion |
title | Group sparse Lasso for cognitive network sensing robust to model uncertainties and outliers |
title_full | Group sparse Lasso for cognitive network sensing robust to model uncertainties and outliers |
title_fullStr | Group sparse Lasso for cognitive network sensing robust to model uncertainties and outliers |
title_full_unstemmed | Group sparse Lasso for cognitive network sensing robust to model uncertainties and outliers |
title_short | Group sparse Lasso for cognitive network sensing robust to model uncertainties and outliers |
title_sort | Group sparse Lasso for cognitive network sensing robust to model uncertainties and outliers |
topic | Spectrum sensing Spectrum cartography Sparse linear regression Total least-squares Outliers Sistemas y Control |
url | https://hdl.handle.net/20.500.12008/41145 https://doi.org/10.1016/j.phycom.2011.07.005 |