Aumentación de conjuntos de datos utilizando redes neuronales generativas profundas distribuidas : Exploración del uso de algoritmos coevolutivos multiobjetivo en busca de mejoras en la diversidad de las muestras generadas

Mautone Estapé, Agustín Felipe - Ripa Budelli, Guillermo - Vidal Berriel, Andres

Supervisor(es): Nesmachnow, Sergio

Resumen:

El objetivo general de este proyecto es comprender el problema de la aumentación de conjuntos de datos y las debilidades presentadas en el entrenamiento de modelos de Redes Neuronales Generativas Antagónicas (GANs). El producto de software desarrollado es una nueva versión de Lipizzaner, un framework co-evolutivo para entrenamiento distribuidos de GANs, que soporta optimización multiobjetivo. Esto implicó la implementación de funciones de aptitud multidimensionales y la incorporación de Algoritmos Evolutivos Multiobjetivo (MOEAs). Los MOEAs implementados fueron NSGA–II, FV–MOEA y MOEA/D, representantes de las tres categorías principales de MOEA: basados en Pareto, basados en indicadores y basados en decomposición. Además, se adaptó el esquema de distribución de Lipizzaner al paradigma de pasaje de mensajes con MPI. El proyecto se enfocó en el problema de la generación de conjuntos de imágenes diversos, por lo que se agregaron funciones de costo en diversdad (E–GAN y GDPP) y métricas de evaluación para estudiar la fidelidad (densidad y FID) y la diversidad (cubrimiento) de los datos generados. Los MOEAs desarrollados se evaluaron sobre el conjunto de datos CelebA y se compararon entre sí y con la versión original de Lipizzaner. Se obtuvieron resultados favorables a la superioridad de MOEA/D en cubrimiento y FID. Sin embargo, la versión original de Lipizzaner obtuvo mejores resultados en densidad que los MOEAs propuestos. En general, se concluyó que es posible utilizar MOEAs para mejorar la diversidad de los datos generados por modelos entrenados en Lipizzaner, a costa de una reducción razonable en fidelidad. Esto motiva a la continuidad de esta investigación y a la mejora de la solución diseñada, para lo que se proponen posibles líneas de trabajo futuro.


Detalles Bibliográficos
2022
Algoritmos evolutivos
Optimización multiobjetivo
Redes generativas antagónicas
Aumentación de conjuntos
Computación de alto desempeño
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/34371
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523228809166848
author Mautone Estapé, Agustín Felipe
author2 Ripa Budelli, Guillermo
Vidal Berriel, Andres
author2_role author
author
author_facet Mautone Estapé, Agustín Felipe
Ripa Budelli, Guillermo
Vidal Berriel, Andres
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
e24054839a124ff913847fb766984c7c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/34371/10/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/34371/7/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/34371/8/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/34371/9/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/34371/6/MRV22.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Mautone Estapé Agustín Felipe, Universidad de la República (Uruguay). Facultad de Ingeniería
Ripa Budelli Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería
Vidal Berriel Andres, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.creator.advisor.none.fl_str_mv Nesmachnow, Sergio
dc.creator.none.fl_str_mv Mautone Estapé, Agustín Felipe
Ripa Budelli, Guillermo
Vidal Berriel, Andres
dc.date.accessioned.none.fl_str_mv 2022-10-26T11:47:53Z
dc.date.available.none.fl_str_mv 2022-10-26T11:47:53Z
dc.date.issued.none.fl_str_mv 2022
dc.description.abstract.none.fl_txt_mv El objetivo general de este proyecto es comprender el problema de la aumentación de conjuntos de datos y las debilidades presentadas en el entrenamiento de modelos de Redes Neuronales Generativas Antagónicas (GANs). El producto de software desarrollado es una nueva versión de Lipizzaner, un framework co-evolutivo para entrenamiento distribuidos de GANs, que soporta optimización multiobjetivo. Esto implicó la implementación de funciones de aptitud multidimensionales y la incorporación de Algoritmos Evolutivos Multiobjetivo (MOEAs). Los MOEAs implementados fueron NSGA–II, FV–MOEA y MOEA/D, representantes de las tres categorías principales de MOEA: basados en Pareto, basados en indicadores y basados en decomposición. Además, se adaptó el esquema de distribución de Lipizzaner al paradigma de pasaje de mensajes con MPI. El proyecto se enfocó en el problema de la generación de conjuntos de imágenes diversos, por lo que se agregaron funciones de costo en diversdad (E–GAN y GDPP) y métricas de evaluación para estudiar la fidelidad (densidad y FID) y la diversidad (cubrimiento) de los datos generados. Los MOEAs desarrollados se evaluaron sobre el conjunto de datos CelebA y se compararon entre sí y con la versión original de Lipizzaner. Se obtuvieron resultados favorables a la superioridad de MOEA/D en cubrimiento y FID. Sin embargo, la versión original de Lipizzaner obtuvo mejores resultados en densidad que los MOEAs propuestos. En general, se concluyó que es posible utilizar MOEAs para mejorar la diversidad de los datos generados por modelos entrenados en Lipizzaner, a costa de una reducción razonable en fidelidad. Esto motiva a la continuidad de esta investigación y a la mejora de la solución diseñada, para lo que se proponen posibles líneas de trabajo futuro.
dc.format.extent.es.fl_str_mv 148 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Mautone Estapé, A., Ripa Budelli, G. y Vidal Berriel, A. Aumentación de conjuntos de datos utilizando redes neuronales generativas profundas distribuidas Exploración del uso de algoritmos coevolutivos multiobjetivo en busca de mejoras en la diversidad de las muestras generadas [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2022.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/34371
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar.FI
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Algoritmos evolutivos
Optimización multiobjetivo
Redes generativas antagónicas
Aumentación de conjuntos
Computación de alto desempeño
dc.title.none.fl_str_mv Aumentación de conjuntos de datos utilizando redes neuronales generativas profundas distribuidas : Exploración del uso de algoritmos coevolutivos multiobjetivo en busca de mejoras en la diversidad de las muestras generadas
dc.type.es.fl_str_mv Tesis de grado
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description El objetivo general de este proyecto es comprender el problema de la aumentación de conjuntos de datos y las debilidades presentadas en el entrenamiento de modelos de Redes Neuronales Generativas Antagónicas (GANs). El producto de software desarrollado es una nueva versión de Lipizzaner, un framework co-evolutivo para entrenamiento distribuidos de GANs, que soporta optimización multiobjetivo. Esto implicó la implementación de funciones de aptitud multidimensionales y la incorporación de Algoritmos Evolutivos Multiobjetivo (MOEAs). Los MOEAs implementados fueron NSGA–II, FV–MOEA y MOEA/D, representantes de las tres categorías principales de MOEA: basados en Pareto, basados en indicadores y basados en decomposición. Además, se adaptó el esquema de distribución de Lipizzaner al paradigma de pasaje de mensajes con MPI. El proyecto se enfocó en el problema de la generación de conjuntos de imágenes diversos, por lo que se agregaron funciones de costo en diversdad (E–GAN y GDPP) y métricas de evaluación para estudiar la fidelidad (densidad y FID) y la diversidad (cubrimiento) de los datos generados. Los MOEAs desarrollados se evaluaron sobre el conjunto de datos CelebA y se compararon entre sí y con la versión original de Lipizzaner. Se obtuvieron resultados favorables a la superioridad de MOEA/D en cubrimiento y FID. Sin embargo, la versión original de Lipizzaner obtuvo mejores resultados en densidad que los MOEAs propuestos. En general, se concluyó que es posible utilizar MOEAs para mejorar la diversidad de los datos generados por modelos entrenados en Lipizzaner, a costa de una reducción razonable en fidelidad. Esto motiva a la continuidad de esta investigación y a la mejora de la solución diseñada, para lo que se proponen posibles líneas de trabajo futuro.
eu_rights_str_mv openAccess
format bachelorThesis
id COLIBRI_3a6cd52b8ae310222af27f38b8d37b5d
identifier_str_mv Mautone Estapé, A., Ripa Budelli, G. y Vidal Berriel, A. Aumentación de conjuntos de datos utilizando redes neuronales generativas profundas distribuidas Exploración del uso de algoritmos coevolutivos multiobjetivo en busca de mejoras en la diversidad de las muestras generadas [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2022.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/34371
publishDate 2022
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Mautone Estapé Agustín Felipe, Universidad de la República (Uruguay). Facultad de IngenieríaRipa Budelli Guillermo, Universidad de la República (Uruguay). Facultad de IngenieríaVidal Berriel Andres, Universidad de la República (Uruguay). Facultad de Ingeniería2022-10-26T11:47:53Z2022-10-26T11:47:53Z2022Mautone Estapé, A., Ripa Budelli, G. y Vidal Berriel, A. Aumentación de conjuntos de datos utilizando redes neuronales generativas profundas distribuidas Exploración del uso de algoritmos coevolutivos multiobjetivo en busca de mejoras en la diversidad de las muestras generadas [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2022.https://hdl.handle.net/20.500.12008/34371El objetivo general de este proyecto es comprender el problema de la aumentación de conjuntos de datos y las debilidades presentadas en el entrenamiento de modelos de Redes Neuronales Generativas Antagónicas (GANs). El producto de software desarrollado es una nueva versión de Lipizzaner, un framework co-evolutivo para entrenamiento distribuidos de GANs, que soporta optimización multiobjetivo. Esto implicó la implementación de funciones de aptitud multidimensionales y la incorporación de Algoritmos Evolutivos Multiobjetivo (MOEAs). Los MOEAs implementados fueron NSGA–II, FV–MOEA y MOEA/D, representantes de las tres categorías principales de MOEA: basados en Pareto, basados en indicadores y basados en decomposición. Además, se adaptó el esquema de distribución de Lipizzaner al paradigma de pasaje de mensajes con MPI. El proyecto se enfocó en el problema de la generación de conjuntos de imágenes diversos, por lo que se agregaron funciones de costo en diversdad (E–GAN y GDPP) y métricas de evaluación para estudiar la fidelidad (densidad y FID) y la diversidad (cubrimiento) de los datos generados. Los MOEAs desarrollados se evaluaron sobre el conjunto de datos CelebA y se compararon entre sí y con la versión original de Lipizzaner. Se obtuvieron resultados favorables a la superioridad de MOEA/D en cubrimiento y FID. Sin embargo, la versión original de Lipizzaner obtuvo mejores resultados en densidad que los MOEAs propuestos. En general, se concluyó que es posible utilizar MOEAs para mejorar la diversidad de los datos generados por modelos entrenados en Lipizzaner, a costa de una reducción razonable en fidelidad. Esto motiva a la continuidad de esta investigación y a la mejora de la solución diseñada, para lo que se proponen posibles líneas de trabajo futuro.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2022-10-24T13:50:02Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MRV22.pdf: 9997355 bytes, checksum: 34c2cd7b719779366dda82fd601e05d0 (MD5)Rejected by Machado Jimena (jmachado@fing.edu.uy), reason: cambio de archivo, por tutor en la portada. gracias!!!!!!!!!!!!! on 2022-10-24T17:45:11Z (GMT)Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2022-10-25T13:47:21Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MRV22.pdf: 10026009 bytes, checksum: e24054839a124ff913847fb766984c7c (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-10-25T19:09:26Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MRV22.pdf: 10026009 bytes, checksum: e24054839a124ff913847fb766984c7c (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-10-26T11:47:53Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MRV22.pdf: 10026009 bytes, checksum: e24054839a124ff913847fb766984c7c (MD5) Previous issue date: 2022148 p.application/pdfesspaUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Algoritmos evolutivosOptimización multiobjetivoRedes generativas antagónicasAumentación de conjuntosComputación de alto desempeñoAumentación de conjuntos de datos utilizando redes neuronales generativas profundas distribuidas : Exploración del uso de algoritmos coevolutivos multiobjetivo en busca de mejoras en la diversidad de las muestras generadasTesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaMautone Estapé, Agustín FelipeRipa Budelli, GuillermoVidal Berriel, AndresNesmachnow, SergioUniversidad de la República (Uruguay). Facultad de IngenieríaIngeniero en ComputaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/34371/10/license.txt6429389a7df7277b72b7924fdc7d47a9MD510CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/34371/7/license_urla006180e3f5b2ad0b88185d14284c0e0MD57license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/34371/8/license_text36c32e9c6da50e6d55578c16944ef7f6MD58license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/34371/9/license_rdf1996b8461bc290aef6a27d78c67b6b52MD59ORIGINALMRV22.pdfMRV22.pdfapplication/pdf10026009http://localhost:8080/xmlui/bitstream/20.500.12008/34371/6/MRV22.pdfe24054839a124ff913847fb766984c7cMD5620.500.12008/343712024-04-12 14:06:40.972oai:colibri.udelar.edu.uy:20.500.12008/34371VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:27.036190COLIBRI - Universidad de la Repúblicafalse
spellingShingle Aumentación de conjuntos de datos utilizando redes neuronales generativas profundas distribuidas : Exploración del uso de algoritmos coevolutivos multiobjetivo en busca de mejoras en la diversidad de las muestras generadas
Mautone Estapé, Agustín Felipe
Algoritmos evolutivos
Optimización multiobjetivo
Redes generativas antagónicas
Aumentación de conjuntos
Computación de alto desempeño
status_str acceptedVersion
title Aumentación de conjuntos de datos utilizando redes neuronales generativas profundas distribuidas : Exploración del uso de algoritmos coevolutivos multiobjetivo en busca de mejoras en la diversidad de las muestras generadas
title_full Aumentación de conjuntos de datos utilizando redes neuronales generativas profundas distribuidas : Exploración del uso de algoritmos coevolutivos multiobjetivo en busca de mejoras en la diversidad de las muestras generadas
title_fullStr Aumentación de conjuntos de datos utilizando redes neuronales generativas profundas distribuidas : Exploración del uso de algoritmos coevolutivos multiobjetivo en busca de mejoras en la diversidad de las muestras generadas
title_full_unstemmed Aumentación de conjuntos de datos utilizando redes neuronales generativas profundas distribuidas : Exploración del uso de algoritmos coevolutivos multiobjetivo en busca de mejoras en la diversidad de las muestras generadas
title_short Aumentación de conjuntos de datos utilizando redes neuronales generativas profundas distribuidas : Exploración del uso de algoritmos coevolutivos multiobjetivo en busca de mejoras en la diversidad de las muestras generadas
title_sort Aumentación de conjuntos de datos utilizando redes neuronales generativas profundas distribuidas : Exploración del uso de algoritmos coevolutivos multiobjetivo en busca de mejoras en la diversidad de las muestras generadas
topic Algoritmos evolutivos
Optimización multiobjetivo
Redes generativas antagónicas
Aumentación de conjuntos
Computación de alto desempeño
url https://hdl.handle.net/20.500.12008/34371