QB4OLAP : Enabling business intelligence over semantic web data

Etcheverry Venturini, Lorena

Supervisor(es): Vaisman, Alejandro

Resumen:

The World-Wide Web was initially conceived as a repository of information tailored for human consumption. In the last decade, the idea of transforming the web into a machine-understandable web of data, has gained momentum. To this end, the World Wide Web Consortium (W3C) maintains a set of standards, referred to as the Semantic Web (SW), which allow to openly share data and metadata. Among these is the Resource Description Framework (RDF), which represents data as graphs, RDF-S and OWL to describe the data structure via ontologies or vocabularies, and SPARQL, the RDF query language. On top of the RDF data model, standards and recommendations can be built to represent data that adheres to other models. The multidimensional (MD) model views data in an n-dimensional space, usually called a data cube, composed of dimensions and facts. The former reflect the perspectives from which data are viewed, and the latter correspond to points in this space, associated with (usually) quantitative data (also known as measures). Facts can be aggregated, disaggregated, and filtered using the dimensions. This process is called Online Analytical Processing (OLAP). Despite the RDF Data Cube Vocabulary (QB) is the W3C standard to represent statistical data, which resembles MD data, it does not include key features needed for OLAP analysis, like dimension hierarchies, dimension level attributes, and aggregate functions. To enable this kind of analysis over SW data cubes, in this thesis we propose the QB4 OLAP vocabulary, an extension of QB. A problem remains, however: writing efficient analytical queries over SW data cubes requires a deep knowledge of RDF and SPARQL, unlikely to be found in typical OLAP users. We address this problem in this thesis. Our approach is based on allowing analytical users to write queries using what they know best: OLAP operations over data cubes, without dealing with SW technicalities. For this, we devised CQL, a simple, high-level query language over data cubes. Then we make use of the structural metadata provided by QB4 OLAP to translate CQL queries into SPARQL ones. We adapt general-purpose SPARQL query optimization techniques, and propose query improvement strategies to produce efficient SPARQL queries. We evaluate our implementation tailoring the well known Star-Schema benchmark, which allows us to compare our proposal against existing ones in a fair way. We show that our approach outperforms other ones. Finally, as another result, our experiments allow us to study which combinations of improvement strategies fits better to an analytical scenario.


La World-Wide Web fue concebida como un repositorio de informa- ción a ser procesada y consumida por humanos. Pero en la última década ha ganado impulso la idea de transformar a la Web en una gran base de datos procesables por máquinas. Con este fin, el World Wide Web Consortium (W3C) ha establecido una serie de estándares también conocidos como estándares para la Web Semántica (WS), los cuales permiten compartir datos y metadatos en formatos abiertos. Entre estos estándares se destacan: el Resource Description Framework (RDF), un modelo de datos basado en grafos para representar datos y relaciones entre ellos, RDF-S y OWL que permiten describir la estructura y el significado de los datos por medio de ontologías o vocabu- larios, y el lenguaje de consultas SPARQL. Estos estándares pueden ser utilizados para construir representaciones de otros modelos de datos, por ejemplo datos tabulares o datos relacionales. El modelo de datos multidimensional (MD) representa a los datos dentro de un espacio n-dimensional, usualmente denominado cubo de datos, que se compone de dimensiones y hechos. Las primeras reflejan las perspectivas desde las cuales interesa analizar los datos, mientras que las segundas corresponden a puntos en este espacio n- dimensional, a los cuales se asocian valores usualmente numéricos, conocidos como medidas. Los hechos pueden ser agregados y resumidos, desagregados, y filtrados utilizando las dimensiones. Este pro- ceso es conocido como Online Analytical Processing (OLAP). Pese a que la W3C ha establecido un estándar que puede ser utilizado para publicación de datos multidimensionales, conocido como el RDF Data Cube Vocabulary (QB), éste no incluye algunos aspectos del modelo MD que son imprescindibles para realizar análisis tipo OLAP como son las jerarquías de dimensión, los atributos en los niveles de dimensión, y las funciones de agregaciónpara resumir valores de medidas. Para permitir este tipo de análisis sobre cubos en la SW, en esta tesis se propone un vocabulario que extiende el vocabulario QB denominado QB4OLAP. Sin embargo, para realizar análisis tipo OLAP en forma eficiente sobre cubos QB4OLAP es necesario un conocimiento profundo de RDF y SPARQL, los cuales distan de ser populares entre los usuarios OLAP típicos. Esta tesis también aborda este problema. Nuestro enfoque consiste en brindar un conjunto de operaciones clásicas para los usuarios OLAP, y luego realizar la traducción en forma automática de estas operaciones en consultas SPARQL. Comenzamos definiendo un lenguaje de consultas para cubos en alto nivel: Cube Query Language (CQL), y luego explotamos la metadata representada mediante QB4OLAP para realizar la traducción a SPARQL. Asimismo, mejoramos el rendimiento de las consultas obtenidas, adaptando y aplicando técnicas existentes de optimización de consultas SPARQL. Para evaluar nuestra propuesta adaptamos a los estándares de la SW el Star Schema benchmark, el cual es el estándar para la evaluación de sistemas tipo OLAP. Esto permite comparar nuestro enfoque con otras propuestas existentes, asi como evaluar el impacto de nuestras estrategias de mejoras de consultas SPARQL. De esta comparación podemos concluir que nuestro enfoque supera a otras propuestas existentes, y que nuestras técnicas de mejoras logran incrementar en 10 veces el rendimiento del sistema.


Detalles Bibliográficos
2016
Web semántica
OLAP
Datos multidimensionales
Semantic web
Multidimensional data
Inglés
Universidad de la República
COLIBRI
http://hdl.handle.net/20.500.12008/9202
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
_version_ 1807523181628489728
author Etcheverry Venturini, Lorena
author_facet Etcheverry Venturini, Lorena
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
39c314d101a119174498c6a2f80d9e0b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/9202/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/9202/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/9202/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/9202/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/9202/1/tesisd-etcheverry.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Etcheverry Venturini Lorena, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.advisor.none.fl_str_mv Vaisman, Alejandro
dc.creator.none.fl_str_mv Etcheverry Venturini, Lorena
dc.date.accessioned.none.fl_str_mv 2017-07-19T22:55:03Z
dc.date.available.none.fl_str_mv 2017-07-19T22:55:03Z
dc.date.issued.none.fl_str_mv 2016
dc.description.abstract.none.fl_txt_mv The World-Wide Web was initially conceived as a repository of information tailored for human consumption. In the last decade, the idea of transforming the web into a machine-understandable web of data, has gained momentum. To this end, the World Wide Web Consortium (W3C) maintains a set of standards, referred to as the Semantic Web (SW), which allow to openly share data and metadata. Among these is the Resource Description Framework (RDF), which represents data as graphs, RDF-S and OWL to describe the data structure via ontologies or vocabularies, and SPARQL, the RDF query language. On top of the RDF data model, standards and recommendations can be built to represent data that adheres to other models. The multidimensional (MD) model views data in an n-dimensional space, usually called a data cube, composed of dimensions and facts. The former reflect the perspectives from which data are viewed, and the latter correspond to points in this space, associated with (usually) quantitative data (also known as measures). Facts can be aggregated, disaggregated, and filtered using the dimensions. This process is called Online Analytical Processing (OLAP). Despite the RDF Data Cube Vocabulary (QB) is the W3C standard to represent statistical data, which resembles MD data, it does not include key features needed for OLAP analysis, like dimension hierarchies, dimension level attributes, and aggregate functions. To enable this kind of analysis over SW data cubes, in this thesis we propose the QB4 OLAP vocabulary, an extension of QB. A problem remains, however: writing efficient analytical queries over SW data cubes requires a deep knowledge of RDF and SPARQL, unlikely to be found in typical OLAP users. We address this problem in this thesis. Our approach is based on allowing analytical users to write queries using what they know best: OLAP operations over data cubes, without dealing with SW technicalities. For this, we devised CQL, a simple, high-level query language over data cubes. Then we make use of the structural metadata provided by QB4 OLAP to translate CQL queries into SPARQL ones. We adapt general-purpose SPARQL query optimization techniques, and propose query improvement strategies to produce efficient SPARQL queries. We evaluate our implementation tailoring the well known Star-Schema benchmark, which allows us to compare our proposal against existing ones in a fair way. We show that our approach outperforms other ones. Finally, as another result, our experiments allow us to study which combinations of improvement strategies fits better to an analytical scenario.
La World-Wide Web fue concebida como un repositorio de informa- ción a ser procesada y consumida por humanos. Pero en la última década ha ganado impulso la idea de transformar a la Web en una gran base de datos procesables por máquinas. Con este fin, el World Wide Web Consortium (W3C) ha establecido una serie de estándares también conocidos como estándares para la Web Semántica (WS), los cuales permiten compartir datos y metadatos en formatos abiertos. Entre estos estándares se destacan: el Resource Description Framework (RDF), un modelo de datos basado en grafos para representar datos y relaciones entre ellos, RDF-S y OWL que permiten describir la estructura y el significado de los datos por medio de ontologías o vocabu- larios, y el lenguaje de consultas SPARQL. Estos estándares pueden ser utilizados para construir representaciones de otros modelos de datos, por ejemplo datos tabulares o datos relacionales. El modelo de datos multidimensional (MD) representa a los datos dentro de un espacio n-dimensional, usualmente denominado cubo de datos, que se compone de dimensiones y hechos. Las primeras reflejan las perspectivas desde las cuales interesa analizar los datos, mientras que las segundas corresponden a puntos en este espacio n- dimensional, a los cuales se asocian valores usualmente numéricos, conocidos como medidas. Los hechos pueden ser agregados y resumidos, desagregados, y filtrados utilizando las dimensiones. Este pro- ceso es conocido como Online Analytical Processing (OLAP). Pese a que la W3C ha establecido un estándar que puede ser utilizado para publicación de datos multidimensionales, conocido como el RDF Data Cube Vocabulary (QB), éste no incluye algunos aspectos del modelo MD que son imprescindibles para realizar análisis tipo OLAP como son las jerarquías de dimensión, los atributos en los niveles de dimensión, y las funciones de agregaciónpara resumir valores de medidas. Para permitir este tipo de análisis sobre cubos en la SW, en esta tesis se propone un vocabulario que extiende el vocabulario QB denominado QB4OLAP. Sin embargo, para realizar análisis tipo OLAP en forma eficiente sobre cubos QB4OLAP es necesario un conocimiento profundo de RDF y SPARQL, los cuales distan de ser populares entre los usuarios OLAP típicos. Esta tesis también aborda este problema. Nuestro enfoque consiste en brindar un conjunto de operaciones clásicas para los usuarios OLAP, y luego realizar la traducción en forma automática de estas operaciones en consultas SPARQL. Comenzamos definiendo un lenguaje de consultas para cubos en alto nivel: Cube Query Language (CQL), y luego explotamos la metadata representada mediante QB4OLAP para realizar la traducción a SPARQL. Asimismo, mejoramos el rendimiento de las consultas obtenidas, adaptando y aplicando técnicas existentes de optimización de consultas SPARQL. Para evaluar nuestra propuesta adaptamos a los estándares de la SW el Star Schema benchmark, el cual es el estándar para la evaluación de sistemas tipo OLAP. Esto permite comparar nuestro enfoque con otras propuestas existentes, asi como evaluar el impacto de nuestras estrategias de mejoras de consultas SPARQL. De esta comparación podemos concluir que nuestro enfoque supera a otras propuestas existentes, y que nuestras técnicas de mejoras logran incrementar en 10 veces el rendimiento del sistema.
dc.description.es.fl_txt_mv Premio Primer puesto otorgado por la Academia Nacional de Ingeniería.
dc.format.extent.es.fl_str_mv 161 p.
dc.identifier.citation.es.fl_str_mv ETCHEVERRY VENTURINI, Lorena. QB4OLAP : Enabling business intelligence over semantic web data [en línea] Tesis de doctorado 2016
dc.identifier.issn.none.fl_str_mv 0797-6410
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12008/9202
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv UR.FI-INCO
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Web semántica
OLAP
Datos multidimensionales
Semantic web
Multidimensional data
dc.title.none.fl_str_mv QB4OLAP : Enabling business intelligence over semantic web data
dc.type.es.fl_str_mv Tesis de doctorado
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Premio Primer puesto otorgado por la Academia Nacional de Ingeniería.
eu_rights_str_mv openAccess
format doctoralThesis
id COLIBRI_39a93f028198fb5c45e316a0678245c6
identifier_str_mv ETCHEVERRY VENTURINI, Lorena. QB4OLAP : Enabling business intelligence over semantic web data [en línea] Tesis de doctorado 2016
0797-6410
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/9202
publishDate 2016
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
spelling Etcheverry Venturini Lorena, Universidad de la República (Uruguay). Facultad de Ingeniería.2017-07-19T22:55:03Z2017-07-19T22:55:03Z2016ETCHEVERRY VENTURINI, Lorena. QB4OLAP : Enabling business intelligence over semantic web data [en línea] Tesis de doctorado 20160797-6410http://hdl.handle.net/20.500.12008/9202Premio Primer puesto otorgado por la Academia Nacional de Ingeniería.The World-Wide Web was initially conceived as a repository of information tailored for human consumption. In the last decade, the idea of transforming the web into a machine-understandable web of data, has gained momentum. To this end, the World Wide Web Consortium (W3C) maintains a set of standards, referred to as the Semantic Web (SW), which allow to openly share data and metadata. Among these is the Resource Description Framework (RDF), which represents data as graphs, RDF-S and OWL to describe the data structure via ontologies or vocabularies, and SPARQL, the RDF query language. On top of the RDF data model, standards and recommendations can be built to represent data that adheres to other models. The multidimensional (MD) model views data in an n-dimensional space, usually called a data cube, composed of dimensions and facts. The former reflect the perspectives from which data are viewed, and the latter correspond to points in this space, associated with (usually) quantitative data (also known as measures). Facts can be aggregated, disaggregated, and filtered using the dimensions. This process is called Online Analytical Processing (OLAP). Despite the RDF Data Cube Vocabulary (QB) is the W3C standard to represent statistical data, which resembles MD data, it does not include key features needed for OLAP analysis, like dimension hierarchies, dimension level attributes, and aggregate functions. To enable this kind of analysis over SW data cubes, in this thesis we propose the QB4 OLAP vocabulary, an extension of QB. A problem remains, however: writing efficient analytical queries over SW data cubes requires a deep knowledge of RDF and SPARQL, unlikely to be found in typical OLAP users. We address this problem in this thesis. Our approach is based on allowing analytical users to write queries using what they know best: OLAP operations over data cubes, without dealing with SW technicalities. For this, we devised CQL, a simple, high-level query language over data cubes. Then we make use of the structural metadata provided by QB4 OLAP to translate CQL queries into SPARQL ones. We adapt general-purpose SPARQL query optimization techniques, and propose query improvement strategies to produce efficient SPARQL queries. We evaluate our implementation tailoring the well known Star-Schema benchmark, which allows us to compare our proposal against existing ones in a fair way. We show that our approach outperforms other ones. Finally, as another result, our experiments allow us to study which combinations of improvement strategies fits better to an analytical scenario.La World-Wide Web fue concebida como un repositorio de informa- ción a ser procesada y consumida por humanos. Pero en la última década ha ganado impulso la idea de transformar a la Web en una gran base de datos procesables por máquinas. Con este fin, el World Wide Web Consortium (W3C) ha establecido una serie de estándares también conocidos como estándares para la Web Semántica (WS), los cuales permiten compartir datos y metadatos en formatos abiertos. Entre estos estándares se destacan: el Resource Description Framework (RDF), un modelo de datos basado en grafos para representar datos y relaciones entre ellos, RDF-S y OWL que permiten describir la estructura y el significado de los datos por medio de ontologías o vocabu- larios, y el lenguaje de consultas SPARQL. Estos estándares pueden ser utilizados para construir representaciones de otros modelos de datos, por ejemplo datos tabulares o datos relacionales. El modelo de datos multidimensional (MD) representa a los datos dentro de un espacio n-dimensional, usualmente denominado cubo de datos, que se compone de dimensiones y hechos. Las primeras reflejan las perspectivas desde las cuales interesa analizar los datos, mientras que las segundas corresponden a puntos en este espacio n- dimensional, a los cuales se asocian valores usualmente numéricos, conocidos como medidas. Los hechos pueden ser agregados y resumidos, desagregados, y filtrados utilizando las dimensiones. Este pro- ceso es conocido como Online Analytical Processing (OLAP). Pese a que la W3C ha establecido un estándar que puede ser utilizado para publicación de datos multidimensionales, conocido como el RDF Data Cube Vocabulary (QB), éste no incluye algunos aspectos del modelo MD que son imprescindibles para realizar análisis tipo OLAP como son las jerarquías de dimensión, los atributos en los niveles de dimensión, y las funciones de agregaciónpara resumir valores de medidas. Para permitir este tipo de análisis sobre cubos en la SW, en esta tesis se propone un vocabulario que extiende el vocabulario QB denominado QB4OLAP. Sin embargo, para realizar análisis tipo OLAP en forma eficiente sobre cubos QB4OLAP es necesario un conocimiento profundo de RDF y SPARQL, los cuales distan de ser populares entre los usuarios OLAP típicos. Esta tesis también aborda este problema. Nuestro enfoque consiste en brindar un conjunto de operaciones clásicas para los usuarios OLAP, y luego realizar la traducción en forma automática de estas operaciones en consultas SPARQL. Comenzamos definiendo un lenguaje de consultas para cubos en alto nivel: Cube Query Language (CQL), y luego explotamos la metadata representada mediante QB4OLAP para realizar la traducción a SPARQL. Asimismo, mejoramos el rendimiento de las consultas obtenidas, adaptando y aplicando técnicas existentes de optimización de consultas SPARQL. Para evaluar nuestra propuesta adaptamos a los estándares de la SW el Star Schema benchmark, el cual es el estándar para la evaluación de sistemas tipo OLAP. Esto permite comparar nuestro enfoque con otras propuestas existentes, asi como evaluar el impacto de nuestras estrategias de mejoras de consultas SPARQL. De esta comparación podemos concluir que nuestro enfoque supera a otras propuestas existentes, y que nuestras técnicas de mejoras logran incrementar en 10 veces el rendimiento del sistema.Submitted by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2017-07-19T22:55:03Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) tesisd-etcheverry.pdf: 2737131 bytes, checksum: 39c314d101a119174498c6a2f80d9e0b (MD5)Made available in DSpace on 2017-07-19T22:55:03Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) tesisd-etcheverry.pdf: 2737131 bytes, checksum: 39c314d101a119174498c6a2f80d9e0b (MD5) Previous issue date: 2016161 p.enengUR.FI-INCOLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)Web semánticaOLAPDatos multidimensionalesSemantic webMultidimensional dataQB4OLAP : Enabling business intelligence over semantic web dataTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaEtcheverry Venturini, LorenaVaisman, AlejandroUniversidad de la República (Uruguay). Facultad de Ingeniería.Doctor en InformáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/9202/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://localhost:8080/xmlui/bitstream/20.500.12008/9202/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/9202/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/9202/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALtesisd-etcheverry.pdftesisd-etcheverry.pdfapplication/pdf2737131http://localhost:8080/xmlui/bitstream/20.500.12008/9202/1/tesisd-etcheverry.pdf39c314d101a119174498c6a2f80d9e0bMD5120.500.12008/92022017-07-19 19:55:52.361oai:colibri.udelar.edu.uy:20.500.12008/9202VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:25.043110COLIBRI - Universidad de la Repúblicafalse
spellingShingle QB4OLAP : Enabling business intelligence over semantic web data
Etcheverry Venturini, Lorena
Web semántica
OLAP
Datos multidimensionales
Semantic web
Multidimensional data
status_str acceptedVersion
title QB4OLAP : Enabling business intelligence over semantic web data
title_full QB4OLAP : Enabling business intelligence over semantic web data
title_fullStr QB4OLAP : Enabling business intelligence over semantic web data
title_full_unstemmed QB4OLAP : Enabling business intelligence over semantic web data
title_short QB4OLAP : Enabling business intelligence over semantic web data
title_sort QB4OLAP : Enabling business intelligence over semantic web data
topic Web semántica
OLAP
Datos multidimensionales
Semantic web
Multidimensional data
url http://hdl.handle.net/20.500.12008/9202