QB4OLAP : Enabling business intelligence over semantic web data
Supervisor(es): Vaisman, Alejandro
Resumen:
The World-Wide Web was initially conceived as a repository of information tailored for human consumption. In the last decade, the idea of transforming the web into a machine-understandable web of data, has gained momentum. To this end, the World Wide Web Consortium (W3C) maintains a set of standards, referred to as the Semantic Web (SW), which allow to openly share data and metadata. Among these is the Resource Description Framework (RDF), which represents data as graphs, RDF-S and OWL to describe the data structure via ontologies or vocabularies, and SPARQL, the RDF query language. On top of the RDF data model, standards and recommendations can be built to represent data that adheres to other models. The multidimensional (MD) model views data in an n-dimensional space, usually called a data cube, composed of dimensions and facts. The former reflect the perspectives from which data are viewed, and the latter correspond to points in this space, associated with (usually) quantitative data (also known as measures). Facts can be aggregated, disaggregated, and filtered using the dimensions. This process is called Online Analytical Processing (OLAP). Despite the RDF Data Cube Vocabulary (QB) is the W3C standard to represent statistical data, which resembles MD data, it does not include key features needed for OLAP analysis, like dimension hierarchies, dimension level attributes, and aggregate functions. To enable this kind of analysis over SW data cubes, in this thesis we propose the QB4 OLAP vocabulary, an extension of QB. A problem remains, however: writing efficient analytical queries over SW data cubes requires a deep knowledge of RDF and SPARQL, unlikely to be found in typical OLAP users. We address this problem in this thesis. Our approach is based on allowing analytical users to write queries using what they know best: OLAP operations over data cubes, without dealing with SW technicalities. For this, we devised CQL, a simple, high-level query language over data cubes. Then we make use of the structural metadata provided by QB4 OLAP to translate CQL queries into SPARQL ones. We adapt general-purpose SPARQL query optimization techniques, and propose query improvement strategies to produce efficient SPARQL queries. We evaluate our implementation tailoring the well known Star-Schema benchmark, which allows us to compare our proposal against existing ones in a fair way. We show that our approach outperforms other ones. Finally, as another result, our experiments allow us to study which combinations of improvement strategies fits better to an analytical scenario.
La World-Wide Web fue concebida como un repositorio de informa- ción a ser procesada y consumida por humanos. Pero en la última década ha ganado impulso la idea de transformar a la Web en una gran base de datos procesables por máquinas. Con este fin, el World Wide Web Consortium (W3C) ha establecido una serie de estándares también conocidos como estándares para la Web Semántica (WS), los cuales permiten compartir datos y metadatos en formatos abiertos. Entre estos estándares se destacan: el Resource Description Framework (RDF), un modelo de datos basado en grafos para representar datos y relaciones entre ellos, RDF-S y OWL que permiten describir la estructura y el significado de los datos por medio de ontologías o vocabu- larios, y el lenguaje de consultas SPARQL. Estos estándares pueden ser utilizados para construir representaciones de otros modelos de datos, por ejemplo datos tabulares o datos relacionales. El modelo de datos multidimensional (MD) representa a los datos dentro de un espacio n-dimensional, usualmente denominado cubo de datos, que se compone de dimensiones y hechos. Las primeras reflejan las perspectivas desde las cuales interesa analizar los datos, mientras que las segundas corresponden a puntos en este espacio n- dimensional, a los cuales se asocian valores usualmente numéricos, conocidos como medidas. Los hechos pueden ser agregados y resumidos, desagregados, y filtrados utilizando las dimensiones. Este pro- ceso es conocido como Online Analytical Processing (OLAP). Pese a que la W3C ha establecido un estándar que puede ser utilizado para publicación de datos multidimensionales, conocido como el RDF Data Cube Vocabulary (QB), éste no incluye algunos aspectos del modelo MD que son imprescindibles para realizar análisis tipo OLAP como son las jerarquías de dimensión, los atributos en los niveles de dimensión, y las funciones de agregaciónpara resumir valores de medidas. Para permitir este tipo de análisis sobre cubos en la SW, en esta tesis se propone un vocabulario que extiende el vocabulario QB denominado QB4OLAP. Sin embargo, para realizar análisis tipo OLAP en forma eficiente sobre cubos QB4OLAP es necesario un conocimiento profundo de RDF y SPARQL, los cuales distan de ser populares entre los usuarios OLAP típicos. Esta tesis también aborda este problema. Nuestro enfoque consiste en brindar un conjunto de operaciones clásicas para los usuarios OLAP, y luego realizar la traducción en forma automática de estas operaciones en consultas SPARQL. Comenzamos definiendo un lenguaje de consultas para cubos en alto nivel: Cube Query Language (CQL), y luego explotamos la metadata representada mediante QB4OLAP para realizar la traducción a SPARQL. Asimismo, mejoramos el rendimiento de las consultas obtenidas, adaptando y aplicando técnicas existentes de optimización de consultas SPARQL. Para evaluar nuestra propuesta adaptamos a los estándares de la SW el Star Schema benchmark, el cual es el estándar para la evaluación de sistemas tipo OLAP. Esto permite comparar nuestro enfoque con otras propuestas existentes, asi como evaluar el impacto de nuestras estrategias de mejoras de consultas SPARQL. De esta comparación podemos concluir que nuestro enfoque supera a otras propuestas existentes, y que nuestras técnicas de mejoras logran incrementar en 10 veces el rendimiento del sistema.
2016 | |
Web semántica OLAP Datos multidimensionales Semantic web Multidimensional data |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
http://hdl.handle.net/20.500.12008/9202 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
_version_ | 1807523181628489728 |
---|---|
author | Etcheverry Venturini, Lorena |
author_facet | Etcheverry Venturini, Lorena |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 39c314d101a119174498c6a2f80d9e0b |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/9202/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/9202/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/9202/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/9202/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/9202/1/tesisd-etcheverry.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Etcheverry Venturini Lorena, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.creator.advisor.none.fl_str_mv | Vaisman, Alejandro |
dc.creator.none.fl_str_mv | Etcheverry Venturini, Lorena |
dc.date.accessioned.none.fl_str_mv | 2017-07-19T22:55:03Z |
dc.date.available.none.fl_str_mv | 2017-07-19T22:55:03Z |
dc.date.issued.none.fl_str_mv | 2016 |
dc.description.abstract.none.fl_txt_mv | The World-Wide Web was initially conceived as a repository of information tailored for human consumption. In the last decade, the idea of transforming the web into a machine-understandable web of data, has gained momentum. To this end, the World Wide Web Consortium (W3C) maintains a set of standards, referred to as the Semantic Web (SW), which allow to openly share data and metadata. Among these is the Resource Description Framework (RDF), which represents data as graphs, RDF-S and OWL to describe the data structure via ontologies or vocabularies, and SPARQL, the RDF query language. On top of the RDF data model, standards and recommendations can be built to represent data that adheres to other models. The multidimensional (MD) model views data in an n-dimensional space, usually called a data cube, composed of dimensions and facts. The former reflect the perspectives from which data are viewed, and the latter correspond to points in this space, associated with (usually) quantitative data (also known as measures). Facts can be aggregated, disaggregated, and filtered using the dimensions. This process is called Online Analytical Processing (OLAP). Despite the RDF Data Cube Vocabulary (QB) is the W3C standard to represent statistical data, which resembles MD data, it does not include key features needed for OLAP analysis, like dimension hierarchies, dimension level attributes, and aggregate functions. To enable this kind of analysis over SW data cubes, in this thesis we propose the QB4 OLAP vocabulary, an extension of QB. A problem remains, however: writing efficient analytical queries over SW data cubes requires a deep knowledge of RDF and SPARQL, unlikely to be found in typical OLAP users. We address this problem in this thesis. Our approach is based on allowing analytical users to write queries using what they know best: OLAP operations over data cubes, without dealing with SW technicalities. For this, we devised CQL, a simple, high-level query language over data cubes. Then we make use of the structural metadata provided by QB4 OLAP to translate CQL queries into SPARQL ones. We adapt general-purpose SPARQL query optimization techniques, and propose query improvement strategies to produce efficient SPARQL queries. We evaluate our implementation tailoring the well known Star-Schema benchmark, which allows us to compare our proposal against existing ones in a fair way. We show that our approach outperforms other ones. Finally, as another result, our experiments allow us to study which combinations of improvement strategies fits better to an analytical scenario. La World-Wide Web fue concebida como un repositorio de informa- ción a ser procesada y consumida por humanos. Pero en la última década ha ganado impulso la idea de transformar a la Web en una gran base de datos procesables por máquinas. Con este fin, el World Wide Web Consortium (W3C) ha establecido una serie de estándares también conocidos como estándares para la Web Semántica (WS), los cuales permiten compartir datos y metadatos en formatos abiertos. Entre estos estándares se destacan: el Resource Description Framework (RDF), un modelo de datos basado en grafos para representar datos y relaciones entre ellos, RDF-S y OWL que permiten describir la estructura y el significado de los datos por medio de ontologías o vocabu- larios, y el lenguaje de consultas SPARQL. Estos estándares pueden ser utilizados para construir representaciones de otros modelos de datos, por ejemplo datos tabulares o datos relacionales. El modelo de datos multidimensional (MD) representa a los datos dentro de un espacio n-dimensional, usualmente denominado cubo de datos, que se compone de dimensiones y hechos. Las primeras reflejan las perspectivas desde las cuales interesa analizar los datos, mientras que las segundas corresponden a puntos en este espacio n- dimensional, a los cuales se asocian valores usualmente numéricos, conocidos como medidas. Los hechos pueden ser agregados y resumidos, desagregados, y filtrados utilizando las dimensiones. Este pro- ceso es conocido como Online Analytical Processing (OLAP). Pese a que la W3C ha establecido un estándar que puede ser utilizado para publicación de datos multidimensionales, conocido como el RDF Data Cube Vocabulary (QB), éste no incluye algunos aspectos del modelo MD que son imprescindibles para realizar análisis tipo OLAP como son las jerarquías de dimensión, los atributos en los niveles de dimensión, y las funciones de agregaciónpara resumir valores de medidas. Para permitir este tipo de análisis sobre cubos en la SW, en esta tesis se propone un vocabulario que extiende el vocabulario QB denominado QB4OLAP. Sin embargo, para realizar análisis tipo OLAP en forma eficiente sobre cubos QB4OLAP es necesario un conocimiento profundo de RDF y SPARQL, los cuales distan de ser populares entre los usuarios OLAP típicos. Esta tesis también aborda este problema. Nuestro enfoque consiste en brindar un conjunto de operaciones clásicas para los usuarios OLAP, y luego realizar la traducción en forma automática de estas operaciones en consultas SPARQL. Comenzamos definiendo un lenguaje de consultas para cubos en alto nivel: Cube Query Language (CQL), y luego explotamos la metadata representada mediante QB4OLAP para realizar la traducción a SPARQL. Asimismo, mejoramos el rendimiento de las consultas obtenidas, adaptando y aplicando técnicas existentes de optimización de consultas SPARQL. Para evaluar nuestra propuesta adaptamos a los estándares de la SW el Star Schema benchmark, el cual es el estándar para la evaluación de sistemas tipo OLAP. Esto permite comparar nuestro enfoque con otras propuestas existentes, asi como evaluar el impacto de nuestras estrategias de mejoras de consultas SPARQL. De esta comparación podemos concluir que nuestro enfoque supera a otras propuestas existentes, y que nuestras técnicas de mejoras logran incrementar en 10 veces el rendimiento del sistema. |
dc.description.es.fl_txt_mv | Premio Primer puesto otorgado por la Academia Nacional de Ingeniería. |
dc.format.extent.es.fl_str_mv | 161 p. |
dc.identifier.citation.es.fl_str_mv | ETCHEVERRY VENTURINI, Lorena. QB4OLAP : Enabling business intelligence over semantic web data [en línea] Tesis de doctorado 2016 |
dc.identifier.issn.none.fl_str_mv | 0797-6410 |
dc.identifier.uri.none.fl_str_mv | http://hdl.handle.net/20.500.12008/9202 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | UR.FI-INCO |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Web semántica OLAP Datos multidimensionales Semantic web Multidimensional data |
dc.title.none.fl_str_mv | QB4OLAP : Enabling business intelligence over semantic web data |
dc.type.es.fl_str_mv | Tesis de doctorado |
dc.type.none.fl_str_mv | info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | Premio Primer puesto otorgado por la Academia Nacional de Ingeniería. |
eu_rights_str_mv | openAccess |
format | doctoralThesis |
id | COLIBRI_39a93f028198fb5c45e316a0678245c6 |
identifier_str_mv | ETCHEVERRY VENTURINI, Lorena. QB4OLAP : Enabling business intelligence over semantic web data [en línea] Tesis de doctorado 2016 0797-6410 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/9202 |
publishDate | 2016 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
spelling | Etcheverry Venturini Lorena, Universidad de la República (Uruguay). Facultad de Ingeniería.2017-07-19T22:55:03Z2017-07-19T22:55:03Z2016ETCHEVERRY VENTURINI, Lorena. QB4OLAP : Enabling business intelligence over semantic web data [en línea] Tesis de doctorado 20160797-6410http://hdl.handle.net/20.500.12008/9202Premio Primer puesto otorgado por la Academia Nacional de Ingeniería.The World-Wide Web was initially conceived as a repository of information tailored for human consumption. In the last decade, the idea of transforming the web into a machine-understandable web of data, has gained momentum. To this end, the World Wide Web Consortium (W3C) maintains a set of standards, referred to as the Semantic Web (SW), which allow to openly share data and metadata. Among these is the Resource Description Framework (RDF), which represents data as graphs, RDF-S and OWL to describe the data structure via ontologies or vocabularies, and SPARQL, the RDF query language. On top of the RDF data model, standards and recommendations can be built to represent data that adheres to other models. The multidimensional (MD) model views data in an n-dimensional space, usually called a data cube, composed of dimensions and facts. The former reflect the perspectives from which data are viewed, and the latter correspond to points in this space, associated with (usually) quantitative data (also known as measures). Facts can be aggregated, disaggregated, and filtered using the dimensions. This process is called Online Analytical Processing (OLAP). Despite the RDF Data Cube Vocabulary (QB) is the W3C standard to represent statistical data, which resembles MD data, it does not include key features needed for OLAP analysis, like dimension hierarchies, dimension level attributes, and aggregate functions. To enable this kind of analysis over SW data cubes, in this thesis we propose the QB4 OLAP vocabulary, an extension of QB. A problem remains, however: writing efficient analytical queries over SW data cubes requires a deep knowledge of RDF and SPARQL, unlikely to be found in typical OLAP users. We address this problem in this thesis. Our approach is based on allowing analytical users to write queries using what they know best: OLAP operations over data cubes, without dealing with SW technicalities. For this, we devised CQL, a simple, high-level query language over data cubes. Then we make use of the structural metadata provided by QB4 OLAP to translate CQL queries into SPARQL ones. We adapt general-purpose SPARQL query optimization techniques, and propose query improvement strategies to produce efficient SPARQL queries. We evaluate our implementation tailoring the well known Star-Schema benchmark, which allows us to compare our proposal against existing ones in a fair way. We show that our approach outperforms other ones. Finally, as another result, our experiments allow us to study which combinations of improvement strategies fits better to an analytical scenario.La World-Wide Web fue concebida como un repositorio de informa- ción a ser procesada y consumida por humanos. Pero en la última década ha ganado impulso la idea de transformar a la Web en una gran base de datos procesables por máquinas. Con este fin, el World Wide Web Consortium (W3C) ha establecido una serie de estándares también conocidos como estándares para la Web Semántica (WS), los cuales permiten compartir datos y metadatos en formatos abiertos. Entre estos estándares se destacan: el Resource Description Framework (RDF), un modelo de datos basado en grafos para representar datos y relaciones entre ellos, RDF-S y OWL que permiten describir la estructura y el significado de los datos por medio de ontologías o vocabu- larios, y el lenguaje de consultas SPARQL. Estos estándares pueden ser utilizados para construir representaciones de otros modelos de datos, por ejemplo datos tabulares o datos relacionales. El modelo de datos multidimensional (MD) representa a los datos dentro de un espacio n-dimensional, usualmente denominado cubo de datos, que se compone de dimensiones y hechos. Las primeras reflejan las perspectivas desde las cuales interesa analizar los datos, mientras que las segundas corresponden a puntos en este espacio n- dimensional, a los cuales se asocian valores usualmente numéricos, conocidos como medidas. Los hechos pueden ser agregados y resumidos, desagregados, y filtrados utilizando las dimensiones. Este pro- ceso es conocido como Online Analytical Processing (OLAP). Pese a que la W3C ha establecido un estándar que puede ser utilizado para publicación de datos multidimensionales, conocido como el RDF Data Cube Vocabulary (QB), éste no incluye algunos aspectos del modelo MD que son imprescindibles para realizar análisis tipo OLAP como son las jerarquías de dimensión, los atributos en los niveles de dimensión, y las funciones de agregaciónpara resumir valores de medidas. Para permitir este tipo de análisis sobre cubos en la SW, en esta tesis se propone un vocabulario que extiende el vocabulario QB denominado QB4OLAP. Sin embargo, para realizar análisis tipo OLAP en forma eficiente sobre cubos QB4OLAP es necesario un conocimiento profundo de RDF y SPARQL, los cuales distan de ser populares entre los usuarios OLAP típicos. Esta tesis también aborda este problema. Nuestro enfoque consiste en brindar un conjunto de operaciones clásicas para los usuarios OLAP, y luego realizar la traducción en forma automática de estas operaciones en consultas SPARQL. Comenzamos definiendo un lenguaje de consultas para cubos en alto nivel: Cube Query Language (CQL), y luego explotamos la metadata representada mediante QB4OLAP para realizar la traducción a SPARQL. Asimismo, mejoramos el rendimiento de las consultas obtenidas, adaptando y aplicando técnicas existentes de optimización de consultas SPARQL. Para evaluar nuestra propuesta adaptamos a los estándares de la SW el Star Schema benchmark, el cual es el estándar para la evaluación de sistemas tipo OLAP. Esto permite comparar nuestro enfoque con otras propuestas existentes, asi como evaluar el impacto de nuestras estrategias de mejoras de consultas SPARQL. De esta comparación podemos concluir que nuestro enfoque supera a otras propuestas existentes, y que nuestras técnicas de mejoras logran incrementar en 10 veces el rendimiento del sistema.Submitted by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2017-07-19T22:55:03Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) tesisd-etcheverry.pdf: 2737131 bytes, checksum: 39c314d101a119174498c6a2f80d9e0b (MD5)Made available in DSpace on 2017-07-19T22:55:03Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) tesisd-etcheverry.pdf: 2737131 bytes, checksum: 39c314d101a119174498c6a2f80d9e0b (MD5) Previous issue date: 2016161 p.enengUR.FI-INCOLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)Web semánticaOLAPDatos multidimensionalesSemantic webMultidimensional dataQB4OLAP : Enabling business intelligence over semantic web dataTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaEtcheverry Venturini, LorenaVaisman, AlejandroUniversidad de la República (Uruguay). Facultad de Ingeniería.Doctor en InformáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/9202/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://localhost:8080/xmlui/bitstream/20.500.12008/9202/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/9202/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/9202/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALtesisd-etcheverry.pdftesisd-etcheverry.pdfapplication/pdf2737131http://localhost:8080/xmlui/bitstream/20.500.12008/9202/1/tesisd-etcheverry.pdf39c314d101a119174498c6a2f80d9e0bMD5120.500.12008/92022017-07-19 19:55:52.361oai:colibri.udelar.edu.uy:20.500.12008/9202VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:25.043110COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | QB4OLAP : Enabling business intelligence over semantic web data Etcheverry Venturini, Lorena Web semántica OLAP Datos multidimensionales Semantic web Multidimensional data |
status_str | acceptedVersion |
title | QB4OLAP : Enabling business intelligence over semantic web data |
title_full | QB4OLAP : Enabling business intelligence over semantic web data |
title_fullStr | QB4OLAP : Enabling business intelligence over semantic web data |
title_full_unstemmed | QB4OLAP : Enabling business intelligence over semantic web data |
title_short | QB4OLAP : Enabling business intelligence over semantic web data |
title_sort | QB4OLAP : Enabling business intelligence over semantic web data |
topic | Web semántica OLAP Datos multidimensionales Semantic web Multidimensional data |
url | http://hdl.handle.net/20.500.12008/9202 |