Smoothness of topological equivalence on the half line for nonautonomous systems.
Resumen:
We study the differentiability properties of the topological equivalence between a uniformly asymptotically stable linear nonautonomous system and a perturbed system with suitable nonlinearities. For this purpose, we construct a homeomorphism inspired in the Palmer's one restricted to the positive half line, studying additional continuity properties and providing sufficient conditions ensuring its Cr–smoothness.
2019 | |
Topological equivalence Nonautonomous differential equations Nonautonomous hyperbolicity Uniform asymptotic stability Diffeomorphism |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/25157 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Topology of leaves for minimal laminations by non-simply-connected hyperbolic surfaces
Autor(es):: Álvarez, Sebastien
Fecha de publicación:: (2022) -
Anomalous partially hyperbolic diffeomorphisms II: stably ergodic examples
Autor(es):: Bonatti, Christian
Fecha de publicación:: (2016) -
Stabiliy of the double-cusp spacetimes and long-time geometrizations
Autor(es):: Bellati Barthés, Alejandro Gustavo
Fecha de publicación:: (2023) -
On some frequency domain properties of small signal models of a class of power systems
Autor(es):: Giusto, Alvaro
Fecha de publicación:: (2007) -
Local implications of almost global stability
Autor(es):: Potrie, Rafael
Fecha de publicación:: (2009)