Some aspects of group actions on one-dimensional manifolds

Brum, Joaquín

Supervisor(es): Alonso, Juan - Paternain, Miguel

Resumen:

We exhibit flexibility phenomena for some (countable) groups acting by order preserving homeomorphisms of the line. More precisely, we show that if a left orderable group admits an amalgam decomposition of the form G=Fn∗ZFm where n+m≥3, then every faithful action of G on the line by order preserving homeomorphisms can be approximated by another action (without global fixed points) that is not semi-conjugated to the initial action. We deduce that LO(G), the space of left orders of G, is a Cantor set. In the special case where G=π1(Σ) is the fundamental group of a closed hyperbolic surface, we found finer techniques of perturbation. For instance, we exhibit a single representation whose conjugacy class in dense in the space of representations. This entails that the space of representations without global fixed points ofπ1(Σ) intoHomeo+(R) is connected, and also that the natural conjugation action of π1(Σ) on LO(π1(Σ)) has a dense orbit. We prove that if Γ is a countable group without a subgroup isomorphic to Z2 that acts faithfully and minimally by orientation preserving homeomorphisms on the circle, then it has a free orbit. We give examples showing that this does not hold for actions by homeomorphisms of the line.


Mostramos fenómenos de flexibilidad para acciones en la recta por homeomorfismos que preservan orientación, de algunos grupos numerables. Más concretamente, mostramos que si un grupo ordenable admite una descomposición como producto amalgamado G =Fn∗ZFm donde n + m ≥ 3, cualquier acción de G en la recta por homeomorfismos que preservan orientación puede ser aproximada por otra acciòn (sin puntos fijos globales) que no es semi-conjugada a la acción original. Deducimos que LO(G), el espacio de órdenes invariantes a izquierda de G, es un conjunto de Cantor. En el caso especial en que G = π 1 (Σ) es el grupo fundamental de una superficie hiperbólica cerrada, encontramos técnicas de perturbación más finas. Por ejemplo, mostramos que existe una representación cuya clase de conjugación es densa en el espacio de representaciones. Esto permite probar que el espacio de representaciones sin puntos fijos globales de π 1 (Σ) en Homeo + (R) es conexo, y también que la acción natural por conjugación de π 1 (Σ) en LO(π 1 (Σ)) tiene una órbita densa. Probamos que si Γ es un grupo numerable sin subgrupos isomorfos a Z 2 , cualquier acción fiel y mínimal de Γ en el círculo por homeomorfismos que preservan orientación, tiene una órbita libre. Damos ejemplos mostrando que esto no ocurre para acciones en la recta. Acciones de Documento


Detalles Bibliográficos
2017
Group actions on manifolds
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/21058
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
_version_ 1807522821192024064
author Brum, Joaquín
author_facet Brum, Joaquín
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
469bb215138c0f61877e54128c171e97
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/21058/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/21058/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/21058/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/21058/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/21058/1/td-brum.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Brum Joaquín
dc.creator.advisor.none.fl_str_mv Alonso, Juan
Paternain, Miguel
dc.creator.none.fl_str_mv Brum, Joaquín
dc.date.accessioned.none.fl_str_mv 2019-06-24T19:37:26Z
dc.date.available.none.fl_str_mv 2019-06-24T19:37:26Z
dc.date.issued.none.fl_str_mv 2017
dc.description.abstract.none.fl_txt_mv We exhibit flexibility phenomena for some (countable) groups acting by order preserving homeomorphisms of the line. More precisely, we show that if a left orderable group admits an amalgam decomposition of the form G=Fn∗ZFm where n+m≥3, then every faithful action of G on the line by order preserving homeomorphisms can be approximated by another action (without global fixed points) that is not semi-conjugated to the initial action. We deduce that LO(G), the space of left orders of G, is a Cantor set. In the special case where G=π1(Σ) is the fundamental group of a closed hyperbolic surface, we found finer techniques of perturbation. For instance, we exhibit a single representation whose conjugacy class in dense in the space of representations. This entails that the space of representations without global fixed points ofπ1(Σ) intoHomeo+(R) is connected, and also that the natural conjugation action of π1(Σ) on LO(π1(Σ)) has a dense orbit. We prove that if Γ is a countable group without a subgroup isomorphic to Z2 that acts faithfully and minimally by orientation preserving homeomorphisms on the circle, then it has a free orbit. We give examples showing that this does not hold for actions by homeomorphisms of the line.
Mostramos fenómenos de flexibilidad para acciones en la recta por homeomorfismos que preservan orientación, de algunos grupos numerables. Más concretamente, mostramos que si un grupo ordenable admite una descomposición como producto amalgamado G =Fn∗ZFm donde n + m ≥ 3, cualquier acción de G en la recta por homeomorfismos que preservan orientación puede ser aproximada por otra acciòn (sin puntos fijos globales) que no es semi-conjugada a la acción original. Deducimos que LO(G), el espacio de órdenes invariantes a izquierda de G, es un conjunto de Cantor. En el caso especial en que G = π 1 (Σ) es el grupo fundamental de una superficie hiperbólica cerrada, encontramos técnicas de perturbación más finas. Por ejemplo, mostramos que existe una representación cuya clase de conjugación es densa en el espacio de representaciones. Esto permite probar que el espacio de representaciones sin puntos fijos globales de π 1 (Σ) en Homeo + (R) es conexo, y también que la acción natural por conjugación de π 1 (Σ) en LO(π 1 (Σ)) tiene una órbita densa. Probamos que si Γ es un grupo numerable sin subgrupos isomorfos a Z 2 , cualquier acción fiel y mínimal de Γ en el círculo por homeomorfismos que preservan orientación, tiene una órbita libre. Damos ejemplos mostrando que esto no ocurre para acciones en la recta. Acciones de Documento
dc.format.extent.es.fl_str_mv 45 h.
dc.format.mimetype.en.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Brum, J. Some aspects of group actions on one-dimensional manifolds [en línea] Tesis de doctorado. UR.FC.CMAT; PEDECIBA Área Matemática, 2017.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/21058
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv UR.FC.CMAT; PEDECIBA Área Matemática
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.en.fl_str_mv Group actions on manifolds
dc.title.none.fl_str_mv Some aspects of group actions on one-dimensional manifolds
dc.type.es.fl_str_mv Tesis de doctorado
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description We exhibit flexibility phenomena for some (countable) groups acting by order preserving homeomorphisms of the line. More precisely, we show that if a left orderable group admits an amalgam decomposition of the form G=Fn∗ZFm where n+m≥3, then every faithful action of G on the line by order preserving homeomorphisms can be approximated by another action (without global fixed points) that is not semi-conjugated to the initial action. We deduce that LO(G), the space of left orders of G, is a Cantor set. In the special case where G=π1(Σ) is the fundamental group of a closed hyperbolic surface, we found finer techniques of perturbation. For instance, we exhibit a single representation whose conjugacy class in dense in the space of representations. This entails that the space of representations without global fixed points ofπ1(Σ) intoHomeo+(R) is connected, and also that the natural conjugation action of π1(Σ) on LO(π1(Σ)) has a dense orbit. We prove that if Γ is a countable group without a subgroup isomorphic to Z2 that acts faithfully and minimally by orientation preserving homeomorphisms on the circle, then it has a free orbit. We give examples showing that this does not hold for actions by homeomorphisms of the line.
eu_rights_str_mv openAccess
format doctoralThesis
id COLIBRI_327aa7b288a61e5c24b26f5d78c21309
identifier_str_mv Brum, J. Some aspects of group actions on one-dimensional manifolds [en línea] Tesis de doctorado. UR.FC.CMAT; PEDECIBA Área Matemática, 2017.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/21058
publishDate 2017
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
spelling Brum Joaquín2019-06-24T19:37:26Z2019-06-24T19:37:26Z2017Brum, J. Some aspects of group actions on one-dimensional manifolds [en línea] Tesis de doctorado. UR.FC.CMAT; PEDECIBA Área Matemática, 2017.https://hdl.handle.net/20.500.12008/21058We exhibit flexibility phenomena for some (countable) groups acting by order preserving homeomorphisms of the line. More precisely, we show that if a left orderable group admits an amalgam decomposition of the form G=Fn∗ZFm where n+m≥3, then every faithful action of G on the line by order preserving homeomorphisms can be approximated by another action (without global fixed points) that is not semi-conjugated to the initial action. We deduce that LO(G), the space of left orders of G, is a Cantor set. In the special case where G=π1(Σ) is the fundamental group of a closed hyperbolic surface, we found finer techniques of perturbation. For instance, we exhibit a single representation whose conjugacy class in dense in the space of representations. This entails that the space of representations without global fixed points ofπ1(Σ) intoHomeo+(R) is connected, and also that the natural conjugation action of π1(Σ) on LO(π1(Σ)) has a dense orbit. We prove that if Γ is a countable group without a subgroup isomorphic to Z2 that acts faithfully and minimally by orientation preserving homeomorphisms on the circle, then it has a free orbit. We give examples showing that this does not hold for actions by homeomorphisms of the line.Mostramos fenómenos de flexibilidad para acciones en la recta por homeomorfismos que preservan orientación, de algunos grupos numerables. Más concretamente, mostramos que si un grupo ordenable admite una descomposición como producto amalgamado G =Fn∗ZFm donde n + m ≥ 3, cualquier acción de G en la recta por homeomorfismos que preservan orientación puede ser aproximada por otra acciòn (sin puntos fijos globales) que no es semi-conjugada a la acción original. Deducimos que LO(G), el espacio de órdenes invariantes a izquierda de G, es un conjunto de Cantor. En el caso especial en que G = π 1 (Σ) es el grupo fundamental de una superficie hiperbólica cerrada, encontramos técnicas de perturbación más finas. Por ejemplo, mostramos que existe una representación cuya clase de conjugación es densa en el espacio de representaciones. Esto permite probar que el espacio de representaciones sin puntos fijos globales de π 1 (Σ) en Homeo + (R) es conexo, y también que la acción natural por conjugación de π 1 (Σ) en LO(π 1 (Σ)) tiene una órbita densa. Probamos que si Γ es un grupo numerable sin subgrupos isomorfos a Z 2 , cualquier acción fiel y mínimal de Γ en el círculo por homeomorfismos que preservan orientación, tiene una órbita libre. Damos ejemplos mostrando que esto no ocurre para acciones en la recta. Acciones de DocumentoSubmitted by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2019-06-24T19:37:26Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) td-brum.pdf: 468069 bytes, checksum: 469bb215138c0f61877e54128c171e97 (MD5)Made available in DSpace on 2019-06-24T19:37:26Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) td-brum.pdf: 468069 bytes, checksum: 469bb215138c0f61877e54128c171e97 (MD5) Previous issue date: 201745 h.application/pdfenengUR.FC.CMAT; PEDECIBA Área MatemáticaLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)Group actions on manifoldsSome aspects of group actions on one-dimensional manifoldsTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaBrum, JoaquínAlonso, JuanPaternain, MiguelUniversidad de la República (Uruguay). Facultad de CienciasDoctor en MatemáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/21058/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://localhost:8080/xmlui/bitstream/20.500.12008/21058/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/21058/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/21058/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALtd-brum.pdftd-brum.pdfapplication/pdf468069http://localhost:8080/xmlui/bitstream/20.500.12008/21058/1/td-brum.pdf469bb215138c0f61877e54128c171e97MD5120.500.12008/210582021-03-03 19:43:48.619oai:colibri.udelar.edu.uy:20.500.12008/21058VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:30:04.222797COLIBRI - Universidad de la Repúblicafalse
spellingShingle Some aspects of group actions on one-dimensional manifolds
Brum, Joaquín
Group actions on manifolds
status_str acceptedVersion
title Some aspects of group actions on one-dimensional manifolds
title_full Some aspects of group actions on one-dimensional manifolds
title_fullStr Some aspects of group actions on one-dimensional manifolds
title_full_unstemmed Some aspects of group actions on one-dimensional manifolds
title_short Some aspects of group actions on one-dimensional manifolds
title_sort Some aspects of group actions on one-dimensional manifolds
topic Group actions on manifolds
url https://hdl.handle.net/20.500.12008/21058