Some aspects of group actions on one-dimensional manifolds
Supervisor(es): Alonso, Juan - Paternain, Miguel
Resumen:
We exhibit flexibility phenomena for some (countable) groups acting by order preserving homeomorphisms of the line. More precisely, we show that if a left orderable group admits an amalgam decomposition of the form G=Fn∗ZFm where n+m≥3, then every faithful action of G on the line by order preserving homeomorphisms can be approximated by another action (without global fixed points) that is not semi-conjugated to the initial action. We deduce that LO(G), the space of left orders of G, is a Cantor set. In the special case where G=π1(Σ) is the fundamental group of a closed hyperbolic surface, we found finer techniques of perturbation. For instance, we exhibit a single representation whose conjugacy class in dense in the space of representations. This entails that the space of representations without global fixed points ofπ1(Σ) intoHomeo+(R) is connected, and also that the natural conjugation action of π1(Σ) on LO(π1(Σ)) has a dense orbit. We prove that if Γ is a countable group without a subgroup isomorphic to Z2 that acts faithfully and minimally by orientation preserving homeomorphisms on the circle, then it has a free orbit. We give examples showing that this does not hold for actions by homeomorphisms of the line.
Mostramos fenómenos de flexibilidad para acciones en la recta por homeomorfismos que preservan orientación, de algunos grupos numerables. Más concretamente, mostramos que si un grupo ordenable admite una descomposición como producto amalgamado G =Fn∗ZFm donde n + m ≥ 3, cualquier acción de G en la recta por homeomorfismos que preservan orientación puede ser aproximada por otra acciòn (sin puntos fijos globales) que no es semi-conjugada a la acción original. Deducimos que LO(G), el espacio de órdenes invariantes a izquierda de G, es un conjunto de Cantor. En el caso especial en que G = π 1 (Σ) es el grupo fundamental de una superficie hiperbólica cerrada, encontramos técnicas de perturbación más finas. Por ejemplo, mostramos que existe una representación cuya clase de conjugación es densa en el espacio de representaciones. Esto permite probar que el espacio de representaciones sin puntos fijos globales de π 1 (Σ) en Homeo + (R) es conexo, y también que la acción natural por conjugación de π 1 (Σ) en LO(π 1 (Σ)) tiene una órbita densa. Probamos que si Γ es un grupo numerable sin subgrupos isomorfos a Z 2 , cualquier acción fiel y mínimal de Γ en el círculo por homeomorfismos que preservan orientación, tiene una órbita libre. Damos ejemplos mostrando que esto no ocurre para acciones en la recta. Acciones de Documento
2017 | |
Group actions on manifolds | |
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/21058 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
_version_ | 1807522821192024064 |
---|---|
author | Brum, Joaquín |
author_facet | Brum, Joaquín |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 469bb215138c0f61877e54128c171e97 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/21058/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/21058/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/21058/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/21058/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/21058/1/td-brum.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Brum Joaquín |
dc.creator.advisor.none.fl_str_mv | Alonso, Juan Paternain, Miguel |
dc.creator.none.fl_str_mv | Brum, Joaquín |
dc.date.accessioned.none.fl_str_mv | 2019-06-24T19:37:26Z |
dc.date.available.none.fl_str_mv | 2019-06-24T19:37:26Z |
dc.date.issued.none.fl_str_mv | 2017 |
dc.description.abstract.none.fl_txt_mv | We exhibit flexibility phenomena for some (countable) groups acting by order preserving homeomorphisms of the line. More precisely, we show that if a left orderable group admits an amalgam decomposition of the form G=Fn∗ZFm where n+m≥3, then every faithful action of G on the line by order preserving homeomorphisms can be approximated by another action (without global fixed points) that is not semi-conjugated to the initial action. We deduce that LO(G), the space of left orders of G, is a Cantor set. In the special case where G=π1(Σ) is the fundamental group of a closed hyperbolic surface, we found finer techniques of perturbation. For instance, we exhibit a single representation whose conjugacy class in dense in the space of representations. This entails that the space of representations without global fixed points ofπ1(Σ) intoHomeo+(R) is connected, and also that the natural conjugation action of π1(Σ) on LO(π1(Σ)) has a dense orbit. We prove that if Γ is a countable group without a subgroup isomorphic to Z2 that acts faithfully and minimally by orientation preserving homeomorphisms on the circle, then it has a free orbit. We give examples showing that this does not hold for actions by homeomorphisms of the line. Mostramos fenómenos de flexibilidad para acciones en la recta por homeomorfismos que preservan orientación, de algunos grupos numerables. Más concretamente, mostramos que si un grupo ordenable admite una descomposición como producto amalgamado G =Fn∗ZFm donde n + m ≥ 3, cualquier acción de G en la recta por homeomorfismos que preservan orientación puede ser aproximada por otra acciòn (sin puntos fijos globales) que no es semi-conjugada a la acción original. Deducimos que LO(G), el espacio de órdenes invariantes a izquierda de G, es un conjunto de Cantor. En el caso especial en que G = π 1 (Σ) es el grupo fundamental de una superficie hiperbólica cerrada, encontramos técnicas de perturbación más finas. Por ejemplo, mostramos que existe una representación cuya clase de conjugación es densa en el espacio de representaciones. Esto permite probar que el espacio de representaciones sin puntos fijos globales de π 1 (Σ) en Homeo + (R) es conexo, y también que la acción natural por conjugación de π 1 (Σ) en LO(π 1 (Σ)) tiene una órbita densa. Probamos que si Γ es un grupo numerable sin subgrupos isomorfos a Z 2 , cualquier acción fiel y mínimal de Γ en el círculo por homeomorfismos que preservan orientación, tiene una órbita libre. Damos ejemplos mostrando que esto no ocurre para acciones en la recta. Acciones de Documento |
dc.format.extent.es.fl_str_mv | 45 h. |
dc.format.mimetype.en.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Brum, J. Some aspects of group actions on one-dimensional manifolds [en línea] Tesis de doctorado. UR.FC.CMAT; PEDECIBA Área Matemática, 2017. |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/21058 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | UR.FC.CMAT; PEDECIBA Área Matemática |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.en.fl_str_mv | Group actions on manifolds |
dc.title.none.fl_str_mv | Some aspects of group actions on one-dimensional manifolds |
dc.type.es.fl_str_mv | Tesis de doctorado |
dc.type.none.fl_str_mv | info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | We exhibit flexibility phenomena for some (countable) groups acting by order preserving homeomorphisms of the line. More precisely, we show that if a left orderable group admits an amalgam decomposition of the form G=Fn∗ZFm where n+m≥3, then every faithful action of G on the line by order preserving homeomorphisms can be approximated by another action (without global fixed points) that is not semi-conjugated to the initial action. We deduce that LO(G), the space of left orders of G, is a Cantor set. In the special case where G=π1(Σ) is the fundamental group of a closed hyperbolic surface, we found finer techniques of perturbation. For instance, we exhibit a single representation whose conjugacy class in dense in the space of representations. This entails that the space of representations without global fixed points ofπ1(Σ) intoHomeo+(R) is connected, and also that the natural conjugation action of π1(Σ) on LO(π1(Σ)) has a dense orbit. We prove that if Γ is a countable group without a subgroup isomorphic to Z2 that acts faithfully and minimally by orientation preserving homeomorphisms on the circle, then it has a free orbit. We give examples showing that this does not hold for actions by homeomorphisms of the line. |
eu_rights_str_mv | openAccess |
format | doctoralThesis |
id | COLIBRI_327aa7b288a61e5c24b26f5d78c21309 |
identifier_str_mv | Brum, J. Some aspects of group actions on one-dimensional manifolds [en línea] Tesis de doctorado. UR.FC.CMAT; PEDECIBA Área Matemática, 2017. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/21058 |
publishDate | 2017 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
spelling | Brum Joaquín2019-06-24T19:37:26Z2019-06-24T19:37:26Z2017Brum, J. Some aspects of group actions on one-dimensional manifolds [en línea] Tesis de doctorado. UR.FC.CMAT; PEDECIBA Área Matemática, 2017.https://hdl.handle.net/20.500.12008/21058We exhibit flexibility phenomena for some (countable) groups acting by order preserving homeomorphisms of the line. More precisely, we show that if a left orderable group admits an amalgam decomposition of the form G=Fn∗ZFm where n+m≥3, then every faithful action of G on the line by order preserving homeomorphisms can be approximated by another action (without global fixed points) that is not semi-conjugated to the initial action. We deduce that LO(G), the space of left orders of G, is a Cantor set. In the special case where G=π1(Σ) is the fundamental group of a closed hyperbolic surface, we found finer techniques of perturbation. For instance, we exhibit a single representation whose conjugacy class in dense in the space of representations. This entails that the space of representations without global fixed points ofπ1(Σ) intoHomeo+(R) is connected, and also that the natural conjugation action of π1(Σ) on LO(π1(Σ)) has a dense orbit. We prove that if Γ is a countable group without a subgroup isomorphic to Z2 that acts faithfully and minimally by orientation preserving homeomorphisms on the circle, then it has a free orbit. We give examples showing that this does not hold for actions by homeomorphisms of the line.Mostramos fenómenos de flexibilidad para acciones en la recta por homeomorfismos que preservan orientación, de algunos grupos numerables. Más concretamente, mostramos que si un grupo ordenable admite una descomposición como producto amalgamado G =Fn∗ZFm donde n + m ≥ 3, cualquier acción de G en la recta por homeomorfismos que preservan orientación puede ser aproximada por otra acciòn (sin puntos fijos globales) que no es semi-conjugada a la acción original. Deducimos que LO(G), el espacio de órdenes invariantes a izquierda de G, es un conjunto de Cantor. En el caso especial en que G = π 1 (Σ) es el grupo fundamental de una superficie hiperbólica cerrada, encontramos técnicas de perturbación más finas. Por ejemplo, mostramos que existe una representación cuya clase de conjugación es densa en el espacio de representaciones. Esto permite probar que el espacio de representaciones sin puntos fijos globales de π 1 (Σ) en Homeo + (R) es conexo, y también que la acción natural por conjugación de π 1 (Σ) en LO(π 1 (Σ)) tiene una órbita densa. Probamos que si Γ es un grupo numerable sin subgrupos isomorfos a Z 2 , cualquier acción fiel y mínimal de Γ en el círculo por homeomorfismos que preservan orientación, tiene una órbita libre. Damos ejemplos mostrando que esto no ocurre para acciones en la recta. Acciones de DocumentoSubmitted by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2019-06-24T19:37:26Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) td-brum.pdf: 468069 bytes, checksum: 469bb215138c0f61877e54128c171e97 (MD5)Made available in DSpace on 2019-06-24T19:37:26Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) td-brum.pdf: 468069 bytes, checksum: 469bb215138c0f61877e54128c171e97 (MD5) Previous issue date: 201745 h.application/pdfenengUR.FC.CMAT; PEDECIBA Área MatemáticaLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)Group actions on manifoldsSome aspects of group actions on one-dimensional manifoldsTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaBrum, JoaquínAlonso, JuanPaternain, MiguelUniversidad de la República (Uruguay). Facultad de CienciasDoctor en MatemáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/21058/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://localhost:8080/xmlui/bitstream/20.500.12008/21058/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/21058/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/21058/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALtd-brum.pdftd-brum.pdfapplication/pdf468069http://localhost:8080/xmlui/bitstream/20.500.12008/21058/1/td-brum.pdf469bb215138c0f61877e54128c171e97MD5120.500.12008/210582021-03-03 19:43:48.619oai:colibri.udelar.edu.uy:20.500.12008/21058VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:30:04.222797COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Some aspects of group actions on one-dimensional manifolds Brum, Joaquín Group actions on manifolds |
status_str | acceptedVersion |
title | Some aspects of group actions on one-dimensional manifolds |
title_full | Some aspects of group actions on one-dimensional manifolds |
title_fullStr | Some aspects of group actions on one-dimensional manifolds |
title_full_unstemmed | Some aspects of group actions on one-dimensional manifolds |
title_short | Some aspects of group actions on one-dimensional manifolds |
title_sort | Some aspects of group actions on one-dimensional manifolds |
topic | Group actions on manifolds |
url | https://hdl.handle.net/20.500.12008/21058 |