Low-complexity, multi-channel, lossless and near-lossless EEG compression
Resumen:
Current EEG applications imply the need for low-latency, low-power, high-fidelity data transmission and storage algorithms. This work proposes a compression algorithm meeting these requirements through the use of modern information theory and signal processing tools (such as universal coding, universal prediction, and fast online implementations of multivariate recursive least squares), combined with simple methods to exploit spatial as well as temporal redundancies typically present in EEG signals. The resulting compression algorithm requires O(1) operations per scalar sample and surpasses the current state of the art in near-lossless and lossless EEG compression ratios.
2014 | |
Procesamiento de Señales | |
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/41794 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Interleaved quantization for near-lossless image coding
Autor(es):: Ramírez Paulino, Ignacio
Fecha de publicación:: (2015) -
Wireless EEG system achieving high throughput and reduced energy consumption through lossless and near-lossless compression.
Autor(es):: Dufort y Álvarez, Guillermo
Fecha de publicación:: (2018) -
Wearable EEG via lossless compression
Autor(es):: Dufort, Guillermo
Fecha de publicación:: (2016) -
Análisis de EEG mediante Análisis en Componentes Independientes
Autor(es):: Ardanaz, José Luis
Fecha de publicación:: (2015) -
An efficient multi-resolution spectral transform for music analysis
Autor(es):: Cancela, Pablo
Fecha de publicación:: (2009)