Low-complexity, multi-channel, lossless and near-lossless EEG compression

Capurro, Ignacio - Lecumberry, Federico - Martín Menoni, Alvaro - Ramírez Paulino, Ignacio - Rovira, Eugenio - Seroussi, Gadiel

Resumen:

Current EEG applications imply the need for low-latency, low-power, high-fidelity data transmission and storage algorithms. This work proposes a compression algorithm meeting these requirements through the use of modern information theory and signal processing tools (such as universal coding, universal prediction, and fast online implementations of multivariate recursive least squares), combined with simple methods to exploit spatial as well as temporal redundancies typically present in EEG signals. The resulting compression algorithm requires O(1) operations per scalar sample and surpasses the current state of the art in near-lossless and lossless EEG compression ratios.


Detalles Bibliográficos
2014
Procesamiento de Señales
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/41794
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Resumen:
Sumario:Trabajo presentado en 22nd European Signal Processing Conference, Lisboa, Portugal, 2014