Not afraid of the dark : NIR-VIS face recognition via cross-spectral hallucination and low-rank embedding
Resumen:
Surveillance cameras today often capture NIR (near infrared) images in low-light environments. However, most face datasets accessible for training and verification are only collected in the VIS (visible light) spectrum. It remains a challenging problem to match NIR to VIS face images due to the different light spectrum. Recently, breakthroughs have been made for VIS face recognition by applying deep learning on a huge amount of labeled VIS face samples. The same deep learning approach cannot be simply applied to NIR face recognition for two main reasons: First, much limited NIR face images are available for training compared to the VIS spectrum. Second, face galleries to be matched are mostly available only in the VIS spectrum. In this paper, we propose an approach to extend the deep learning breakthrough for VIS face recognition to the NIR spectrum, without retraining the underlying deep models that see only VIS faces. Our approach consists of two core components, cross-spectral hallucination and low-rank embedding, to optimize respectively input and output of a VIS deep model for cross-spectral face recognition. Cross-spectral hallucination produces VIS faces from NIR images through a deep learning approach. Low-rank embedding restores a low-rank structure for faces deep features across both NIR and VIS spectrum. We observe that it is often equally effective to perform hallucination to input NIR images or low-rank embedding to output deep features for a VIS deep model for cross-spectral recognition. When hallucination and low-rank embedding are deployed together, we observe significant further improvement, we obtain state-of-the-art accuracy on the CASIA NIR-VIS v2.0 benchmark, without the need at all to re-train the recognition system.
2017 | |
Face recognition Neural networks Feature extraction Machine learning Image recognition Procesamiento de Señales |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/43514 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522942072913920 |
---|---|
author | Sapiro, Guillermo |
author2 | Qiu, Qiang Lezama, José |
author2_role | author author |
author_facet | Sapiro, Guillermo Qiu, Qiang Lezama, José |
author_role | author |
bitstream.checksum.fl_str_mv | 528b6a3c8c7d0c6e28129d576e989607 9833653f73f7853880c94a6fead477b1 4afdbb8c545fd630ea7db775da747b2f 9da0b6dfac957114c6a7714714b86306 777311faf7ccb604465432b3881236c6 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/43514/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/43514/2/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/43514/3/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/43514/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/43514/1/LQS17.pdf |
collection | COLIBRI |
dc.creator.none.fl_str_mv | Sapiro, Guillermo Qiu, Qiang Lezama, José |
dc.date.accessioned.none.fl_str_mv | 2024-04-16T16:21:08Z |
dc.date.available.none.fl_str_mv | 2024-04-16T16:21:08Z |
dc.date.issued.es.fl_str_mv | 2017 |
dc.date.submitted.es.fl_str_mv | 20240416 |
dc.description.abstract.none.fl_txt_mv | Surveillance cameras today often capture NIR (near infrared) images in low-light environments. However, most face datasets accessible for training and verification are only collected in the VIS (visible light) spectrum. It remains a challenging problem to match NIR to VIS face images due to the different light spectrum. Recently, breakthroughs have been made for VIS face recognition by applying deep learning on a huge amount of labeled VIS face samples. The same deep learning approach cannot be simply applied to NIR face recognition for two main reasons: First, much limited NIR face images are available for training compared to the VIS spectrum. Second, face galleries to be matched are mostly available only in the VIS spectrum. In this paper, we propose an approach to extend the deep learning breakthrough for VIS face recognition to the NIR spectrum, without retraining the underlying deep models that see only VIS faces. Our approach consists of two core components, cross-spectral hallucination and low-rank embedding, to optimize respectively input and output of a VIS deep model for cross-spectral face recognition. Cross-spectral hallucination produces VIS faces from NIR images through a deep learning approach. Low-rank embedding restores a low-rank structure for faces deep features across both NIR and VIS spectrum. We observe that it is often equally effective to perform hallucination to input NIR images or low-rank embedding to output deep features for a VIS deep model for cross-spectral recognition. When hallucination and low-rank embedding are deployed together, we observe significant further improvement, we obtain state-of-the-art accuracy on the CASIA NIR-VIS v2.0 benchmark, without the need at all to re-train the recognition system. |
dc.description.es.fl_txt_mv | Versión de acceso abierto provista por Computer Vision Foundation |
dc.identifier.citation.es.fl_str_mv | Lezama, J, Qiu. Q. Sapiro, G. "Not afraid of the dark: NIR-VIS face recognition via cross-spectral hallucination and low-rank embedding" Publicado en: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 jul. 2017, pp. 6807-6816, doi: 10.1109/CVPR.2017.720. |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/43514 |
dc.language.iso.none.fl_str_mv | en eng |
dc.relation.ispartof.es.fl_str_mv | Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 jul. 2017 |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Face recognition Neural networks Feature extraction Machine learning Image recognition |
dc.subject.other.es.fl_str_mv | Procesamiento de Señales |
dc.title.none.fl_str_mv | Not afraid of the dark : NIR-VIS face recognition via cross-spectral hallucination and low-rank embedding |
dc.type.es.fl_str_mv | Ponencia |
dc.type.none.fl_str_mv | info:eu-repo/semantics/conferenceObject |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Versión de acceso abierto provista por Computer Vision Foundation |
eu_rights_str_mv | openAccess |
format | conferenceObject |
id | COLIBRI_2e1df7cb2be7765345bda63292b7013f |
identifier_str_mv | Lezama, J, Qiu. Q. Sapiro, G. "Not afraid of the dark: NIR-VIS face recognition via cross-spectral hallucination and low-rank embedding" Publicado en: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 jul. 2017, pp. 6807-6816, doi: 10.1109/CVPR.2017.720. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/43514 |
publishDate | 2017 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | 2024-04-16T16:21:08Z2024-04-16T16:21:08Z201720240416Lezama, J, Qiu. Q. Sapiro, G. "Not afraid of the dark: NIR-VIS face recognition via cross-spectral hallucination and low-rank embedding" Publicado en: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 jul. 2017, pp. 6807-6816, doi: 10.1109/CVPR.2017.720.https://hdl.handle.net/20.500.12008/43514Versión de acceso abierto provista por Computer Vision FoundationSurveillance cameras today often capture NIR (near infrared) images in low-light environments. However, most face datasets accessible for training and verification are only collected in the VIS (visible light) spectrum. It remains a challenging problem to match NIR to VIS face images due to the different light spectrum. Recently, breakthroughs have been made for VIS face recognition by applying deep learning on a huge amount of labeled VIS face samples. The same deep learning approach cannot be simply applied to NIR face recognition for two main reasons: First, much limited NIR face images are available for training compared to the VIS spectrum. Second, face galleries to be matched are mostly available only in the VIS spectrum. In this paper, we propose an approach to extend the deep learning breakthrough for VIS face recognition to the NIR spectrum, without retraining the underlying deep models that see only VIS faces. Our approach consists of two core components, cross-spectral hallucination and low-rank embedding, to optimize respectively input and output of a VIS deep model for cross-spectral face recognition. Cross-spectral hallucination produces VIS faces from NIR images through a deep learning approach. Low-rank embedding restores a low-rank structure for faces deep features across both NIR and VIS spectrum. We observe that it is often equally effective to perform hallucination to input NIR images or low-rank embedding to output deep features for a VIS deep model for cross-spectral recognition. When hallucination and low-rank embedding are deployed together, we observe significant further improvement, we obtain state-of-the-art accuracy on the CASIA NIR-VIS v2.0 benchmark, without the need at all to re-train the recognition system.Made available in DSpace on 2024-04-16T16:21:08Z (GMT). No. of bitstreams: 5 LQS17.pdf: 2417231 bytes, checksum: 777311faf7ccb604465432b3881236c6 (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4244 bytes, checksum: 528b6a3c8c7d0c6e28129d576e989607 (MD5) Previous issue date: 2017enengConference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 jul. 2017Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Face recognitionNeural networksFeature extractionMachine learningImage recognitionProcesamiento de SeñalesNot afraid of the dark : NIR-VIS face recognition via cross-spectral hallucination and low-rank embeddingPonenciainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaSapiro, GuillermoQiu, QiangLezama, JoséProcesamiento de SeñalesTratamiento de ImágenesLICENSElicense.txttext/plain4244http://localhost:8080/xmlui/bitstream/20.500.12008/43514/5/license.txt528b6a3c8c7d0c6e28129d576e989607MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/43514/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/43514/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/43514/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALLQS17.pdfapplication/pdf2417231http://localhost:8080/xmlui/bitstream/20.500.12008/43514/1/LQS17.pdf777311faf7ccb604465432b3881236c6MD5120.500.12008/435142024-07-24 17:25:49.32oai:colibri.udelar.edu.uy:20.500.12008/43514VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMNCg0KDQpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIA0KDQpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdO+/vXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGRlcO+/vXNpdG8gZW4gQ09MSUJSSSwgbGEgVW5pdmVyc2lkYWQgZGUgUmVw77+9YmxpY2EgcHJvY2VkZXLvv70gYTogIA0KDQphKSBhcmNoaXZhciBt77+9cyBkZSB1bmEgY29waWEgZGUgbGEgb2JyYSBlbiBsb3Mgc2Vydmlkb3JlcyBkZSBsYSBVbml2ZXJzaWRhZCBhIGxvcyBlZmVjdG9zIGRlIGdhcmFudGl6YXIgYWNjZXNvLCBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNp77+9bg0KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nvv71uIHkgYWNjZXNpYmlsaWRhZCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8uDQpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuDQoNCg0KRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4NCg0KRWwgYXV0b3IgYXNlZ3VyYSBxdWUgbGEgb2JyYSBubyBpbmZyaWdlIG5pbmfvv71uIGRlcmVjaG8gc29icmUgdGVyY2Vyb3MsIHlhIHNlYSBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3Ryby4NCg0KRWwgYXV0b3IgZ2FyYW50aXphIHF1ZSBzaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgY3VhbGVzIG5vIHRpZW5lIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgeSBxdWUgZXNlIG1hdGVyaWFsIGN1eW9zIGRlcmVjaG9zIHNvbiBkZSB0ZXJjZXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZGVwb3NpdGFkbyBlbiBlbCBSZXBvc2l0b3Jpby4NCg0KRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuDQoNCkVsIGF1dG9yIHNlcu+/vSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcu+/vSByZXNwb25zYWJsZSBwb3IgbGFzIGV2ZW50dWFsZXMgdmlvbGFjaW9uZXMgYWwgZGVyZWNobyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZW4gcXVlIHB1ZWRhIGluY3VycmlyIGVsIGF1dG9yLg0KDQpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNp77+9biBkZSBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGxhIFVERUxBUiAgYWRvcHRhcu+/vSB0b2RhcyBsYXMgbWVkaWRhcyBuZWNlc2FyaWFzIHBhcmEgZXZpdGFyIGxhIGNvbnRpbnVhY2nvv71uIGRlIGRpY2hhIGluZnJhY2Np77+9biwgbGFzIHF1ZSBwb2Ry77+9biBpbmNsdWlyIGVsIHJldGlybyBkZWwgYWNjZXNvIGEgbG9zIGNvbnRlbmlkb3MgeS9vIG1ldGFkYXRvcyBkZWwgZG9jdW1lbnRvIHJlc3BlY3Rpdm8uDQoNCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoNCg0KDQpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLg0KDQpBdHJpYnVjae+/vW4g77+9IENvbXBhcnRpciBJZ3VhbCAoQ0MgLSBCeS1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgZGViZSBoYWNlcnNlIG1lZGlhbnRlIHVuYSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuDQoNCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuDQoNCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IENvbXBhcnRpciBJZ3VhbCAoQ0Mg77+9IEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjae+/vW4gZGUgbGFzIG9icmFzIGRlcml2YWRhcyBzZSBoYWdhIG1lZGlhbnRlIGxpY2VuY2lhIGlk77+9bnRpY2EgYSBsYSBkZSBsYSBvYnJhIG9yaWdpbmFsLCByZWNvbm9jaWVuZG8gYSBsb3MgYXV0b3Jlcy4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IFNpbiBEZXJpdmFkYXMgKENDIC0gQnktTkMtTkQpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSwgcGVybyBubyBzZSBwZXJtaXRlIGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzIHkgbm8gc2UgcGVybWl0ZSB1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBkZWJpZW5kbyByZWNvbm9jZXIgYWwgYXV0b3IuDQoNCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4NCg0KQ3VhbmRvIHNlIHNlbGVjY2lvbmUgdW5hIGxpY2VuY2lhIHF1ZSBoYWJpbGl0ZSB1c29zIGNvbWVyY2lhbGVzLCBlbCBkZXDvv71zaXRvIGRlYmVy77+9IHNlciBhY29tcGHvv71hZG8gZGVsIGF2YWwgZGVsIGplcmFyY2Egbe+/vXhpbW8gZGVsIFNlcnZpY2lvIGNvcnJlc3BvbmRpZW50ZS4NCg0KDQoNCg0KDQoNCg0KDQo=Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:50.169637COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Not afraid of the dark : NIR-VIS face recognition via cross-spectral hallucination and low-rank embedding Sapiro, Guillermo Face recognition Neural networks Feature extraction Machine learning Image recognition Procesamiento de Señales |
status_str | publishedVersion |
title | Not afraid of the dark : NIR-VIS face recognition via cross-spectral hallucination and low-rank embedding |
title_full | Not afraid of the dark : NIR-VIS face recognition via cross-spectral hallucination and low-rank embedding |
title_fullStr | Not afraid of the dark : NIR-VIS face recognition via cross-spectral hallucination and low-rank embedding |
title_full_unstemmed | Not afraid of the dark : NIR-VIS face recognition via cross-spectral hallucination and low-rank embedding |
title_short | Not afraid of the dark : NIR-VIS face recognition via cross-spectral hallucination and low-rank embedding |
title_sort | Not afraid of the dark : NIR-VIS face recognition via cross-spectral hallucination and low-rank embedding |
topic | Face recognition Neural networks Feature extraction Machine learning Image recognition Procesamiento de Señales |
url | https://hdl.handle.net/20.500.12008/43514 |