Análisis del muestreo Gibbs para detección de motivos en secuencias biológicas

Angelone, Laura

Supervisor(es): Urquhart, María E. - Tapia Paredes, Elizabeth

Resumen:

El reconocimiento de patrones comunes o motivos en la evolución, disposición estructural y funcionalidad biológica de un conjunto de secuencias biológicas (ADN o proteínas) es aún hoy un desafío importante en Biología Computacional. El problema requiere la determinación simultánea de la composición y ubicación de los motivos comunes a partir del conjunto de secuencias afectadas por ruido de evolución y desalineadas. De acuerdo a los trabajos de Ming Li et al. [44][45], la determinación de una solución exacta es un problema NP completo y por lo tanto la formulación de soluciones aproximadas es de fundamental interés. En particular, el modelado estadístico de secuencias mediante modelos ocultos de Markov (HMM) o mediante Muestreo Gibbs permite el diseño de aproximaciones biológicamente significativas sujeto a la disponibilidad de un número adecuado y variado de secuencias. Estas restricciones son especialmente limitantes en el caso de modelos HMM pero salvable en muestreo Gibbs admitiendo una carga computacional ligeramente mayor. A diferencia del modelado HMM, el cual asume una determinada estructura para el proceso de generación de datos, el muestreo Gibbs intenta aproximar la distribución de probabilidad que rige a los datos bajo estudio en un proceso iterativo caracterizado por una gran simplicidad algorítmica. En esta tesis se analizan tanto los aspectos teóricos como prácticos que rigen el muestreo Gibbs para el problema de detección de motivos. Los resultados de este análisis se encuentran en la implementación de un software específico, su aplicación a la determinación de motivos en familias de secuencias de proteínas muy divergentes encuadradas en el Proyecto "Caracterización de factores basales de trascripción en parásitos protozoarios", Serra et al.[56], y su comparación con los programas de uso libre Gibbs Sampling[32] y MEME[5] .


Detalles Bibliográficos
2005
RECONOCIMIENTO DE PATRONES
BIOLOGIA COMPUTACIONAL
ALINEACION MULTIPLE DE SECUENCIAS BIOLOGICAS
MUESTREO GIBBS
Español
Universidad de la República
COLIBRI
http://hdl.handle.net/20.500.12008/2935
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
_version_ 1807523180275826688
author Angelone, Laura
author_facet Angelone, Laura
author_role author
bitstream.checksum.fl_str_mv 528b6a3c8c7d0c6e28129d576e989607
9833653f73f7853880c94a6fead477b1
4afdbb8c545fd630ea7db775da747b2f
9da0b6dfac957114c6a7714714b86306
a83327c8f0a3fd4cea8e3ed4c4d24549
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/2935/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/2935/2/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/2935/3/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/2935/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/2935/1/tesis-angelone.pdf
collection COLIBRI
dc.creator.advisor.none.fl_str_mv Urquhart, María E.
Tapia Paredes, Elizabeth
dc.creator.none.fl_str_mv Angelone, Laura
dc.date.accessioned.none.fl_str_mv 2014-11-24T22:35:54Z
dc.date.available.none.fl_str_mv 2014-11-24T22:35:54Z
dc.date.issued.es.fl_str_mv 2005
dc.date.submitted.es.fl_str_mv 20141202
dc.description.abstract.none.fl_txt_mv El reconocimiento de patrones comunes o motivos en la evolución, disposición estructural y funcionalidad biológica de un conjunto de secuencias biológicas (ADN o proteínas) es aún hoy un desafío importante en Biología Computacional. El problema requiere la determinación simultánea de la composición y ubicación de los motivos comunes a partir del conjunto de secuencias afectadas por ruido de evolución y desalineadas. De acuerdo a los trabajos de Ming Li et al. [44][45], la determinación de una solución exacta es un problema NP completo y por lo tanto la formulación de soluciones aproximadas es de fundamental interés. En particular, el modelado estadístico de secuencias mediante modelos ocultos de Markov (HMM) o mediante Muestreo Gibbs permite el diseño de aproximaciones biológicamente significativas sujeto a la disponibilidad de un número adecuado y variado de secuencias. Estas restricciones son especialmente limitantes en el caso de modelos HMM pero salvable en muestreo Gibbs admitiendo una carga computacional ligeramente mayor. A diferencia del modelado HMM, el cual asume una determinada estructura para el proceso de generación de datos, el muestreo Gibbs intenta aproximar la distribución de probabilidad que rige a los datos bajo estudio en un proceso iterativo caracterizado por una gran simplicidad algorítmica. En esta tesis se analizan tanto los aspectos teóricos como prácticos que rigen el muestreo Gibbs para el problema de detección de motivos. Los resultados de este análisis se encuentran en la implementación de un software específico, su aplicación a la determinación de motivos en familias de secuencias de proteínas muy divergentes encuadradas en el Proyecto "Caracterización de factores basales de trascripción en parásitos protozoarios", Serra et al.[56], y su comparación con los programas de uso libre Gibbs Sampling[32] y MEME[5] .
dc.format.extent.es.fl_str_mv 114 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv ANGELONE, L. "Análisis del muestreo Gibbs para detección de motivos en secuencias biológicas". Tesis de maestría, Universidad de la República (Uruguay). Facultad de Ingeniería. Instituto de Computación – PEDECIBA, 2005.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12008/2935
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv UR. FI-INCO,
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv RECONOCIMIENTO DE PATRONES
BIOLOGIA COMPUTACIONAL
ALINEACION MULTIPLE DE SECUENCIAS BIOLOGICAS
MUESTREO GIBBS
dc.title.none.fl_str_mv Análisis del muestreo Gibbs para detección de motivos en secuencias biológicas
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description El reconocimiento de patrones comunes o motivos en la evolución, disposición estructural y funcionalidad biológica de un conjunto de secuencias biológicas (ADN o proteínas) es aún hoy un desafío importante en Biología Computacional. El problema requiere la determinación simultánea de la composición y ubicación de los motivos comunes a partir del conjunto de secuencias afectadas por ruido de evolución y desalineadas. De acuerdo a los trabajos de Ming Li et al. [44][45], la determinación de una solución exacta es un problema NP completo y por lo tanto la formulación de soluciones aproximadas es de fundamental interés. En particular, el modelado estadístico de secuencias mediante modelos ocultos de Markov (HMM) o mediante Muestreo Gibbs permite el diseño de aproximaciones biológicamente significativas sujeto a la disponibilidad de un número adecuado y variado de secuencias. Estas restricciones son especialmente limitantes en el caso de modelos HMM pero salvable en muestreo Gibbs admitiendo una carga computacional ligeramente mayor. A diferencia del modelado HMM, el cual asume una determinada estructura para el proceso de generación de datos, el muestreo Gibbs intenta aproximar la distribución de probabilidad que rige a los datos bajo estudio en un proceso iterativo caracterizado por una gran simplicidad algorítmica. En esta tesis se analizan tanto los aspectos teóricos como prácticos que rigen el muestreo Gibbs para el problema de detección de motivos. Los resultados de este análisis se encuentran en la implementación de un software específico, su aplicación a la determinación de motivos en familias de secuencias de proteínas muy divergentes encuadradas en el Proyecto "Caracterización de factores basales de trascripción en parásitos protozoarios", Serra et al.[56], y su comparación con los programas de uso libre Gibbs Sampling[32] y MEME[5] .
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_2d3d0bb9f1bee913a218e81a50487eae
identifier_str_mv ANGELONE, L. "Análisis del muestreo Gibbs para detección de motivos en secuencias biológicas". Tesis de maestría, Universidad de la República (Uruguay). Facultad de Ingeniería. Instituto de Computación – PEDECIBA, 2005.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/2935
publishDate 2005
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
spelling 2014-11-24T22:35:54Z2014-11-24T22:35:54Z200520141202ANGELONE, L. "Análisis del muestreo Gibbs para detección de motivos en secuencias biológicas". Tesis de maestría, Universidad de la República (Uruguay). Facultad de Ingeniería. Instituto de Computación – PEDECIBA, 2005.http://hdl.handle.net/20.500.12008/2935El reconocimiento de patrones comunes o motivos en la evolución, disposición estructural y funcionalidad biológica de un conjunto de secuencias biológicas (ADN o proteínas) es aún hoy un desafío importante en Biología Computacional. El problema requiere la determinación simultánea de la composición y ubicación de los motivos comunes a partir del conjunto de secuencias afectadas por ruido de evolución y desalineadas. De acuerdo a los trabajos de Ming Li et al. [44][45], la determinación de una solución exacta es un problema NP completo y por lo tanto la formulación de soluciones aproximadas es de fundamental interés. En particular, el modelado estadístico de secuencias mediante modelos ocultos de Markov (HMM) o mediante Muestreo Gibbs permite el diseño de aproximaciones biológicamente significativas sujeto a la disponibilidad de un número adecuado y variado de secuencias. Estas restricciones son especialmente limitantes en el caso de modelos HMM pero salvable en muestreo Gibbs admitiendo una carga computacional ligeramente mayor. A diferencia del modelado HMM, el cual asume una determinada estructura para el proceso de generación de datos, el muestreo Gibbs intenta aproximar la distribución de probabilidad que rige a los datos bajo estudio en un proceso iterativo caracterizado por una gran simplicidad algorítmica. En esta tesis se analizan tanto los aspectos teóricos como prácticos que rigen el muestreo Gibbs para el problema de detección de motivos. Los resultados de este análisis se encuentran en la implementación de un software específico, su aplicación a la determinación de motivos en familias de secuencias de proteínas muy divergentes encuadradas en el Proyecto "Caracterización de factores basales de trascripción en parásitos protozoarios", Serra et al.[56], y su comparación con los programas de uso libre Gibbs Sampling[32] y MEME[5] .Made available in DSpace on 2014-11-24T22:35:54Z (GMT). No. of bitstreams: 5 tesis-angelone.pdf: 3620107 bytes, checksum: a83327c8f0a3fd4cea8e3ed4c4d24549 (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4244 bytes, checksum: 528b6a3c8c7d0c6e28129d576e989607 (MD5) Previous issue date: 2005114 p.application/pdfesspaUR. FI-INCO,Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)RECONOCIMIENTO DE PATRONESBIOLOGIA COMPUTACIONALALINEACION MULTIPLE DE SECUENCIAS BIOLOGICASMUESTREO GIBBSAnálisis del muestreo Gibbs para detección de motivos en secuencias biológicasTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaAngelone, LauraUrquhart, María E.Tapia Paredes, ElizabethUniversidad de la República (Uruguay). Facultad de Ingeniería. Instituto de Computación – PEDECIBAMagíster en InformáticaLICENSElicense.txttext/plain4244http://localhost:8080/xmlui/bitstream/20.500.12008/2935/5/license.txt528b6a3c8c7d0c6e28129d576e989607MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/2935/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/2935/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/2935/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALtesis-angelone.pdfapplication/pdf3620107http://localhost:8080/xmlui/bitstream/20.500.12008/2935/1/tesis-angelone.pdfa83327c8f0a3fd4cea8e3ed4c4d24549MD5120.500.12008/29352014-11-24 20:35:54.452oai:colibri.udelar.edu.uy:20.500.12008/2935VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMNCg0KDQpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIA0KDQpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdO+/vXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGRlcO+/vXNpdG8gZW4gQ09MSUJSSSwgbGEgVW5pdmVyc2lkYWQgZGUgUmVw77+9YmxpY2EgcHJvY2VkZXLvv70gYTogIA0KDQphKSBhcmNoaXZhciBt77+9cyBkZSB1bmEgY29waWEgZGUgbGEgb2JyYSBlbiBsb3Mgc2Vydmlkb3JlcyBkZSBsYSBVbml2ZXJzaWRhZCBhIGxvcyBlZmVjdG9zIGRlIGdhcmFudGl6YXIgYWNjZXNvLCBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNp77+9bg0KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nvv71uIHkgYWNjZXNpYmlsaWRhZCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8uDQpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuDQoNCg0KRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4NCg0KRWwgYXV0b3IgYXNlZ3VyYSBxdWUgbGEgb2JyYSBubyBpbmZyaWdlIG5pbmfvv71uIGRlcmVjaG8gc29icmUgdGVyY2Vyb3MsIHlhIHNlYSBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3Ryby4NCg0KRWwgYXV0b3IgZ2FyYW50aXphIHF1ZSBzaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgY3VhbGVzIG5vIHRpZW5lIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgeSBxdWUgZXNlIG1hdGVyaWFsIGN1eW9zIGRlcmVjaG9zIHNvbiBkZSB0ZXJjZXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZGVwb3NpdGFkbyBlbiBlbCBSZXBvc2l0b3Jpby4NCg0KRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuDQoNCkVsIGF1dG9yIHNlcu+/vSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcu+/vSByZXNwb25zYWJsZSBwb3IgbGFzIGV2ZW50dWFsZXMgdmlvbGFjaW9uZXMgYWwgZGVyZWNobyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZW4gcXVlIHB1ZWRhIGluY3VycmlyIGVsIGF1dG9yLg0KDQpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNp77+9biBkZSBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGxhIFVERUxBUiAgYWRvcHRhcu+/vSB0b2RhcyBsYXMgbWVkaWRhcyBuZWNlc2FyaWFzIHBhcmEgZXZpdGFyIGxhIGNvbnRpbnVhY2nvv71uIGRlIGRpY2hhIGluZnJhY2Np77+9biwgbGFzIHF1ZSBwb2Ry77+9biBpbmNsdWlyIGVsIHJldGlybyBkZWwgYWNjZXNvIGEgbG9zIGNvbnRlbmlkb3MgeS9vIG1ldGFkYXRvcyBkZWwgZG9jdW1lbnRvIHJlc3BlY3Rpdm8uDQoNCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoNCg0KDQpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLg0KDQpBdHJpYnVjae+/vW4g77+9IENvbXBhcnRpciBJZ3VhbCAoQ0MgLSBCeS1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgZGViZSBoYWNlcnNlIG1lZGlhbnRlIHVuYSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuDQoNCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuDQoNCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IENvbXBhcnRpciBJZ3VhbCAoQ0Mg77+9IEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjae+/vW4gZGUgbGFzIG9icmFzIGRlcml2YWRhcyBzZSBoYWdhIG1lZGlhbnRlIGxpY2VuY2lhIGlk77+9bnRpY2EgYSBsYSBkZSBsYSBvYnJhIG9yaWdpbmFsLCByZWNvbm9jaWVuZG8gYSBsb3MgYXV0b3Jlcy4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IFNpbiBEZXJpdmFkYXMgKENDIC0gQnktTkMtTkQpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSwgcGVybyBubyBzZSBwZXJtaXRlIGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzIHkgbm8gc2UgcGVybWl0ZSB1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBkZWJpZW5kbyByZWNvbm9jZXIgYWwgYXV0b3IuDQoNCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4NCg0KQ3VhbmRvIHNlIHNlbGVjY2lvbmUgdW5hIGxpY2VuY2lhIHF1ZSBoYWJpbGl0ZSB1c29zIGNvbWVyY2lhbGVzLCBlbCBkZXDvv71zaXRvIGRlYmVy77+9IHNlciBhY29tcGHvv71hZG8gZGVsIGF2YWwgZGVsIGplcmFyY2Egbe+/vXhpbW8gZGVsIFNlcnZpY2lvIGNvcnJlc3BvbmRpZW50ZS4NCg0KDQoNCg0KDQoNCg0KDQo=Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:21.177347COLIBRI - Universidad de la Repúblicafalse
spellingShingle Análisis del muestreo Gibbs para detección de motivos en secuencias biológicas
Angelone, Laura
RECONOCIMIENTO DE PATRONES
BIOLOGIA COMPUTACIONAL
ALINEACION MULTIPLE DE SECUENCIAS BIOLOGICAS
MUESTREO GIBBS
status_str acceptedVersion
title Análisis del muestreo Gibbs para detección de motivos en secuencias biológicas
title_full Análisis del muestreo Gibbs para detección de motivos en secuencias biológicas
title_fullStr Análisis del muestreo Gibbs para detección de motivos en secuencias biológicas
title_full_unstemmed Análisis del muestreo Gibbs para detección de motivos en secuencias biológicas
title_short Análisis del muestreo Gibbs para detección de motivos en secuencias biológicas
title_sort Análisis del muestreo Gibbs para detección de motivos en secuencias biológicas
topic RECONOCIMIENTO DE PATRONES
BIOLOGIA COMPUTACIONAL
ALINEACION MULTIPLE DE SECUENCIAS BIOLOGICAS
MUESTREO GIBBS
url http://hdl.handle.net/20.500.12008/2935