The complexity of the K-reliability in networks constrained to diameter two
Resumen:
Consider a communication network with a set of sites and a set of links between them. Suppose that the sites are perfect but the links can fail independently from one another. Suppose also that at any given instant t, every link xy is operational or failed with probabilities denoted by p(xy) and 1 - p(xy) respectively. Therefore, there is an \201Coperational subnetwork\201D composed by all the sites and only those links that are operational. Computing the network reliability, i.e. the probability that a given subset K of \201Cdistinguished\201D sites are connected on the operational network yielded at t is known as the K-reliability problem and has been widely studied [1]. When additionaly requiring that the operational network be d-K-connected (i.e. that the distance between any pair of sites of K be bounded by a positive integer d) the problem is known as ddiameter- constrained K-reliability (d-DCKR). In this case the reliability is denoted by Rk(G; d). First introduced in [2], this problem has recently gained relevance because it can model situations where limits exist on the acceptable delay times to propagate traffic (like in voice applications over IP networks) or in the amount of hops that packets can undergo (peer-to-peer networks). The general version is known to belong to the NP-hard complexity class [3]. In this paper we prove
2012 | |
Network reliability Survivability Diameter constraints Combinatorial problems Computational complexity Formal Verification |
|
Universidad de la República | |
COLIBRI | |
http://hdl.handle.net/20.500.12008/3465 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
_version_ | 1807522943493734400 |
---|---|
author | Canale, Eduardo |
author2 | Cancela, Héctor Robledo Amoza, Franco Rafael Sartor, Pablo |
author2_role | author author author |
author_facet | Canale, Eduardo Cancela, Héctor Robledo Amoza, Franco Rafael Sartor, Pablo |
author_role | author |
bitstream.checksum.fl_str_mv | 528b6a3c8c7d0c6e28129d576e989607 9833653f73f7853880c94a6fead477b1 4afdbb8c545fd630ea7db775da747b2f 9da0b6dfac957114c6a7714714b86306 e39e366ab323d8faf9e6f3447fbb0678 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/3465/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/3465/2/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/3465/3/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/3465/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/3465/1/TR1209.pdf |
collection | COLIBRI |
dc.creator.none.fl_str_mv | Canale, Eduardo Cancela, Héctor Robledo Amoza, Franco Rafael Sartor, Pablo |
dc.date.accessioned.none.fl_str_mv | 2014-12-02T16:06:28Z |
dc.date.available.none.fl_str_mv | 2014-12-02T16:06:28Z |
dc.date.issued.es.fl_str_mv | 2012 |
dc.date.submitted.es.fl_str_mv | 20141202 |
dc.description.abstract.none.fl_txt_mv | Consider a communication network with a set of sites and a set of links between them. Suppose that the sites are perfect but the links can fail independently from one another. Suppose also that at any given instant t, every link xy is operational or failed with probabilities denoted by p(xy) and 1 - p(xy) respectively. Therefore, there is an \201Coperational subnetwork\201D composed by all the sites and only those links that are operational. Computing the network reliability, i.e. the probability that a given subset K of \201Cdistinguished\201D sites are connected on the operational network yielded at t is known as the K-reliability problem and has been widely studied [1]. When additionaly requiring that the operational network be d-K-connected (i.e. that the distance between any pair of sites of K be bounded by a positive integer d) the problem is known as ddiameter- constrained K-reliability (d-DCKR). In this case the reliability is denoted by Rk(G; d). First introduced in [2], this problem has recently gained relevance because it can model situations where limits exist on the acceptable delay times to propagate traffic (like in voice applications over IP networks) or in the amount of hops that packets can undergo (peer-to-peer networks). The general version is known to belong to the NP-hard complexity class [3]. In this paper we prove |
dc.format.extent.es.fl_str_mv | 7 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | CANALE, E., CANCELA BOSI, H., ROBLEDO, F., y otros. "The complexity of the K-reliability in networks constrained to diameter two". Reportes Técnicos 12-09. UR. FI – INCO, 2012. |
dc.identifier.issn.es.fl_str_mv | 0797-6410 |
dc.identifier.uri.none.fl_str_mv | http://hdl.handle.net/20.500.12008/3465 |
dc.language.iso.none.fl_str_mv | in |
dc.publisher.es.fl_str_mv | UR. FI – INCO. |
dc.relation.ispartof.es.fl_str_mv | Reportes Técnicos 12-09 |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Network reliability Survivability Diameter constraints Combinatorial problems Computational complexity Formal Verification |
dc.title.none.fl_str_mv | The complexity of the K-reliability in networks constrained to diameter two |
dc.type.es.fl_str_mv | Reporte técnico |
dc.type.none.fl_str_mv | info:eu-repo/semantics/report |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Consider a communication network with a set of sites and a set of links between them. Suppose that the sites are perfect but the links can fail independently from one another. Suppose also that at any given instant t, every link xy is operational or failed with probabilities denoted by p(xy) and 1 - p(xy) respectively. Therefore, there is an \201Coperational subnetwork\201D composed by all the sites and only those links that are operational. Computing the network reliability, i.e. the probability that a given subset K of \201Cdistinguished\201D sites are connected on the operational network yielded at t is known as the K-reliability problem and has been widely studied [1]. When additionaly requiring that the operational network be d-K-connected (i.e. that the distance between any pair of sites of K be bounded by a positive integer d) the problem is known as ddiameter- constrained K-reliability (d-DCKR). In this case the reliability is denoted by Rk(G; d). First introduced in [2], this problem has recently gained relevance because it can model situations where limits exist on the acceptable delay times to propagate traffic (like in voice applications over IP networks) or in the amount of hops that packets can undergo (peer-to-peer networks). The general version is known to belong to the NP-hard complexity class [3]. In this paper we prove |
eu_rights_str_mv | openAccess |
format | report |
id | COLIBRI_2d17f266cb0d4e00cea28532270028eb |
identifier_str_mv | CANALE, E., CANCELA BOSI, H., ROBLEDO, F., y otros. "The complexity of the K-reliability in networks constrained to diameter two". Reportes Técnicos 12-09. UR. FI – INCO, 2012. 0797-6410 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language_invalid_str_mv | in |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/3465 |
publishDate | 2012 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
spelling | 2014-12-02T16:06:28Z2014-12-02T16:06:28Z201220141202CANALE, E., CANCELA BOSI, H., ROBLEDO, F., y otros. "The complexity of the K-reliability in networks constrained to diameter two". Reportes Técnicos 12-09. UR. FI – INCO, 2012.0797-6410http://hdl.handle.net/20.500.12008/3465Consider a communication network with a set of sites and a set of links between them. Suppose that the sites are perfect but the links can fail independently from one another. Suppose also that at any given instant t, every link xy is operational or failed with probabilities denoted by p(xy) and 1 - p(xy) respectively. Therefore, there is an \201Coperational subnetwork\201D composed by all the sites and only those links that are operational. Computing the network reliability, i.e. the probability that a given subset K of \201Cdistinguished\201D sites are connected on the operational network yielded at t is known as the K-reliability problem and has been widely studied [1]. When additionaly requiring that the operational network be d-K-connected (i.e. that the distance between any pair of sites of K be bounded by a positive integer d) the problem is known as ddiameter- constrained K-reliability (d-DCKR). In this case the reliability is denoted by Rk(G; d). First introduced in [2], this problem has recently gained relevance because it can model situations where limits exist on the acceptable delay times to propagate traffic (like in voice applications over IP networks) or in the amount of hops that packets can undergo (peer-to-peer networks). The general version is known to belong to the NP-hard complexity class [3]. In this paper we proveMade available in DSpace on 2014-12-02T16:06:28Z (GMT). No. of bitstreams: 5 TR1209.pdf: 117852 bytes, checksum: e39e366ab323d8faf9e6f3447fbb0678 (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4244 bytes, checksum: 528b6a3c8c7d0c6e28129d576e989607 (MD5) Previous issue date: 20127 p.application/pdfinUR. FI – INCO.Reportes Técnicos 12-09Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)Network reliabilitySurvivabilityDiameter constraintsCombinatorial problemsComputational complexityFormal VerificationThe complexity of the K-reliability in networks constrained to diameter twoReporte técnicoinfo:eu-repo/semantics/reportinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaCanale, EduardoCancela, HéctorRobledo Amoza, Franco RafaelSartor, PabloLICENSElicense.txttext/plain4244http://localhost:8080/xmlui/bitstream/20.500.12008/3465/5/license.txt528b6a3c8c7d0c6e28129d576e989607MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/3465/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/3465/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/3465/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALTR1209.pdfapplication/pdf117852http://localhost:8080/xmlui/bitstream/20.500.12008/3465/1/TR1209.pdfe39e366ab323d8faf9e6f3447fbb0678MD5120.500.12008/34652016-05-04 14:02:26.0oai:colibri.udelar.edu.uy:20.500.12008/3465VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMNCg0KDQpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIA0KDQpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdO+/vXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGRlcO+/vXNpdG8gZW4gQ09MSUJSSSwgbGEgVW5pdmVyc2lkYWQgZGUgUmVw77+9YmxpY2EgcHJvY2VkZXLvv70gYTogIA0KDQphKSBhcmNoaXZhciBt77+9cyBkZSB1bmEgY29waWEgZGUgbGEgb2JyYSBlbiBsb3Mgc2Vydmlkb3JlcyBkZSBsYSBVbml2ZXJzaWRhZCBhIGxvcyBlZmVjdG9zIGRlIGdhcmFudGl6YXIgYWNjZXNvLCBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNp77+9bg0KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nvv71uIHkgYWNjZXNpYmlsaWRhZCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8uDQpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuDQoNCg0KRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4NCg0KRWwgYXV0b3IgYXNlZ3VyYSBxdWUgbGEgb2JyYSBubyBpbmZyaWdlIG5pbmfvv71uIGRlcmVjaG8gc29icmUgdGVyY2Vyb3MsIHlhIHNlYSBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3Ryby4NCg0KRWwgYXV0b3IgZ2FyYW50aXphIHF1ZSBzaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgY3VhbGVzIG5vIHRpZW5lIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgeSBxdWUgZXNlIG1hdGVyaWFsIGN1eW9zIGRlcmVjaG9zIHNvbiBkZSB0ZXJjZXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZGVwb3NpdGFkbyBlbiBlbCBSZXBvc2l0b3Jpby4NCg0KRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuDQoNCkVsIGF1dG9yIHNlcu+/vSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcu+/vSByZXNwb25zYWJsZSBwb3IgbGFzIGV2ZW50dWFsZXMgdmlvbGFjaW9uZXMgYWwgZGVyZWNobyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZW4gcXVlIHB1ZWRhIGluY3VycmlyIGVsIGF1dG9yLg0KDQpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNp77+9biBkZSBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGxhIFVERUxBUiAgYWRvcHRhcu+/vSB0b2RhcyBsYXMgbWVkaWRhcyBuZWNlc2FyaWFzIHBhcmEgZXZpdGFyIGxhIGNvbnRpbnVhY2nvv71uIGRlIGRpY2hhIGluZnJhY2Np77+9biwgbGFzIHF1ZSBwb2Ry77+9biBpbmNsdWlyIGVsIHJldGlybyBkZWwgYWNjZXNvIGEgbG9zIGNvbnRlbmlkb3MgeS9vIG1ldGFkYXRvcyBkZWwgZG9jdW1lbnRvIHJlc3BlY3Rpdm8uDQoNCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoNCg0KDQpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLg0KDQpBdHJpYnVjae+/vW4g77+9IENvbXBhcnRpciBJZ3VhbCAoQ0MgLSBCeS1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgZGViZSBoYWNlcnNlIG1lZGlhbnRlIHVuYSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuDQoNCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuDQoNCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IENvbXBhcnRpciBJZ3VhbCAoQ0Mg77+9IEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjae+/vW4gZGUgbGFzIG9icmFzIGRlcml2YWRhcyBzZSBoYWdhIG1lZGlhbnRlIGxpY2VuY2lhIGlk77+9bnRpY2EgYSBsYSBkZSBsYSBvYnJhIG9yaWdpbmFsLCByZWNvbm9jaWVuZG8gYSBsb3MgYXV0b3Jlcy4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IFNpbiBEZXJpdmFkYXMgKENDIC0gQnktTkMtTkQpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSwgcGVybyBubyBzZSBwZXJtaXRlIGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzIHkgbm8gc2UgcGVybWl0ZSB1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBkZWJpZW5kbyByZWNvbm9jZXIgYWwgYXV0b3IuDQoNCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4NCg0KQ3VhbmRvIHNlIHNlbGVjY2lvbmUgdW5hIGxpY2VuY2lhIHF1ZSBoYWJpbGl0ZSB1c29zIGNvbWVyY2lhbGVzLCBlbCBkZXDvv71zaXRvIGRlYmVy77+9IHNlciBhY29tcGHvv71hZG8gZGVsIGF2YWwgZGVsIGplcmFyY2Egbe+/vXhpbW8gZGVsIFNlcnZpY2lvIGNvcnJlc3BvbmRpZW50ZS4NCg0KDQoNCg0KDQoNCg0KDQo=Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:56.388144COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | The complexity of the K-reliability in networks constrained to diameter two Canale, Eduardo Network reliability Survivability Diameter constraints Combinatorial problems Computational complexity Formal Verification |
status_str | publishedVersion |
title | The complexity of the K-reliability in networks constrained to diameter two |
title_full | The complexity of the K-reliability in networks constrained to diameter two |
title_fullStr | The complexity of the K-reliability in networks constrained to diameter two |
title_full_unstemmed | The complexity of the K-reliability in networks constrained to diameter two |
title_short | The complexity of the K-reliability in networks constrained to diameter two |
title_sort | The complexity of the K-reliability in networks constrained to diameter two |
topic | Network reliability Survivability Diameter constraints Combinatorial problems Computational complexity Formal Verification |
url | http://hdl.handle.net/20.500.12008/3465 |