The complexity of the K-reliability in networks constrained to diameter two

Canale, Eduardo - Cancela, Héctor - Robledo Amoza, Franco Rafael - Sartor, Pablo

Resumen:

Consider a communication network with a set of sites and a set of links between them. Suppose that the sites are perfect but the links can fail independently from one another. Suppose also that at any given instant t, every link xy is operational or failed with probabilities denoted by p(xy) and 1 - p(xy) respectively. Therefore, there is an \201Coperational subnetwork\201D composed by all the sites and only those links that are operational. Computing the network reliability, i.e. the probability that a given subset K of \201Cdistinguished\201D sites are connected on the operational network yielded at t is known as the K-reliability problem and has been widely studied [1]. When additionaly requiring that the operational network be d-K-connected (i.e. that the distance between any pair of sites of K be bounded by a positive integer d) the problem is known as ddiameter- constrained K-reliability (d-DCKR). In this case the reliability is denoted by Rk(G; d). First introduced in [2], this problem has recently gained relevance because it can model situations where limits exist on the acceptable delay times to propagate traffic (like in voice applications over IP networks) or in the amount of hops that packets can undergo (peer-to-peer networks). The general version is known to belong to the NP-hard complexity class [3]. In this paper we prove


Detalles Bibliográficos
2012
Network reliability
Survivability
Diameter constraints
Combinatorial problems
Computational complexity
Formal Verification
Universidad de la República
COLIBRI
http://hdl.handle.net/20.500.12008/3465
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
_version_ 1807522943493734400
author Canale, Eduardo
author2 Cancela, Héctor
Robledo Amoza, Franco Rafael
Sartor, Pablo
author2_role author
author
author
author_facet Canale, Eduardo
Cancela, Héctor
Robledo Amoza, Franco Rafael
Sartor, Pablo
author_role author
bitstream.checksum.fl_str_mv 528b6a3c8c7d0c6e28129d576e989607
9833653f73f7853880c94a6fead477b1
4afdbb8c545fd630ea7db775da747b2f
9da0b6dfac957114c6a7714714b86306
e39e366ab323d8faf9e6f3447fbb0678
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/3465/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/3465/2/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/3465/3/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/3465/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/3465/1/TR1209.pdf
collection COLIBRI
dc.creator.none.fl_str_mv Canale, Eduardo
Cancela, Héctor
Robledo Amoza, Franco Rafael
Sartor, Pablo
dc.date.accessioned.none.fl_str_mv 2014-12-02T16:06:28Z
dc.date.available.none.fl_str_mv 2014-12-02T16:06:28Z
dc.date.issued.es.fl_str_mv 2012
dc.date.submitted.es.fl_str_mv 20141202
dc.description.abstract.none.fl_txt_mv Consider a communication network with a set of sites and a set of links between them. Suppose that the sites are perfect but the links can fail independently from one another. Suppose also that at any given instant t, every link xy is operational or failed with probabilities denoted by p(xy) and 1 - p(xy) respectively. Therefore, there is an \201Coperational subnetwork\201D composed by all the sites and only those links that are operational. Computing the network reliability, i.e. the probability that a given subset K of \201Cdistinguished\201D sites are connected on the operational network yielded at t is known as the K-reliability problem and has been widely studied [1]. When additionaly requiring that the operational network be d-K-connected (i.e. that the distance between any pair of sites of K be bounded by a positive integer d) the problem is known as ddiameter- constrained K-reliability (d-DCKR). In this case the reliability is denoted by Rk(G; d). First introduced in [2], this problem has recently gained relevance because it can model situations where limits exist on the acceptable delay times to propagate traffic (like in voice applications over IP networks) or in the amount of hops that packets can undergo (peer-to-peer networks). The general version is known to belong to the NP-hard complexity class [3]. In this paper we prove
dc.format.extent.es.fl_str_mv 7 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv CANALE, E., CANCELA BOSI, H., ROBLEDO, F., y otros. "The complexity of the K-reliability in networks constrained to diameter two". Reportes Técnicos 12-09. UR. FI – INCO, 2012.
dc.identifier.issn.es.fl_str_mv 0797-6410
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12008/3465
dc.language.iso.none.fl_str_mv in
dc.publisher.es.fl_str_mv UR. FI – INCO.
dc.relation.ispartof.es.fl_str_mv Reportes Técnicos 12-09
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Network reliability
Survivability
Diameter constraints
Combinatorial problems
Computational complexity
Formal Verification
dc.title.none.fl_str_mv The complexity of the K-reliability in networks constrained to diameter two
dc.type.es.fl_str_mv Reporte técnico
dc.type.none.fl_str_mv info:eu-repo/semantics/report
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Consider a communication network with a set of sites and a set of links between them. Suppose that the sites are perfect but the links can fail independently from one another. Suppose also that at any given instant t, every link xy is operational or failed with probabilities denoted by p(xy) and 1 - p(xy) respectively. Therefore, there is an \201Coperational subnetwork\201D composed by all the sites and only those links that are operational. Computing the network reliability, i.e. the probability that a given subset K of \201Cdistinguished\201D sites are connected on the operational network yielded at t is known as the K-reliability problem and has been widely studied [1]. When additionaly requiring that the operational network be d-K-connected (i.e. that the distance between any pair of sites of K be bounded by a positive integer d) the problem is known as ddiameter- constrained K-reliability (d-DCKR). In this case the reliability is denoted by Rk(G; d). First introduced in [2], this problem has recently gained relevance because it can model situations where limits exist on the acceptable delay times to propagate traffic (like in voice applications over IP networks) or in the amount of hops that packets can undergo (peer-to-peer networks). The general version is known to belong to the NP-hard complexity class [3]. In this paper we prove
eu_rights_str_mv openAccess
format report
id COLIBRI_2d17f266cb0d4e00cea28532270028eb
identifier_str_mv CANALE, E., CANCELA BOSI, H., ROBLEDO, F., y otros. "The complexity of the K-reliability in networks constrained to diameter two". Reportes Técnicos 12-09. UR. FI – INCO, 2012.
0797-6410
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language_invalid_str_mv in
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/3465
publishDate 2012
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
spelling 2014-12-02T16:06:28Z2014-12-02T16:06:28Z201220141202CANALE, E., CANCELA BOSI, H., ROBLEDO, F., y otros. "The complexity of the K-reliability in networks constrained to diameter two". Reportes Técnicos 12-09. UR. FI – INCO, 2012.0797-6410http://hdl.handle.net/20.500.12008/3465Consider a communication network with a set of sites and a set of links between them. Suppose that the sites are perfect but the links can fail independently from one another. Suppose also that at any given instant t, every link xy is operational or failed with probabilities denoted by p(xy) and 1 - p(xy) respectively. Therefore, there is an \201Coperational subnetwork\201D composed by all the sites and only those links that are operational. Computing the network reliability, i.e. the probability that a given subset K of \201Cdistinguished\201D sites are connected on the operational network yielded at t is known as the K-reliability problem and has been widely studied [1]. When additionaly requiring that the operational network be d-K-connected (i.e. that the distance between any pair of sites of K be bounded by a positive integer d) the problem is known as ddiameter- constrained K-reliability (d-DCKR). In this case the reliability is denoted by Rk(G; d). First introduced in [2], this problem has recently gained relevance because it can model situations where limits exist on the acceptable delay times to propagate traffic (like in voice applications over IP networks) or in the amount of hops that packets can undergo (peer-to-peer networks). The general version is known to belong to the NP-hard complexity class [3]. In this paper we proveMade available in DSpace on 2014-12-02T16:06:28Z (GMT). No. of bitstreams: 5 TR1209.pdf: 117852 bytes, checksum: e39e366ab323d8faf9e6f3447fbb0678 (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4244 bytes, checksum: 528b6a3c8c7d0c6e28129d576e989607 (MD5) Previous issue date: 20127 p.application/pdfinUR. FI – INCO.Reportes Técnicos 12-09Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)Network reliabilitySurvivabilityDiameter constraintsCombinatorial problemsComputational complexityFormal VerificationThe complexity of the K-reliability in networks constrained to diameter twoReporte técnicoinfo:eu-repo/semantics/reportinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaCanale, EduardoCancela, HéctorRobledo Amoza, Franco RafaelSartor, PabloLICENSElicense.txttext/plain4244http://localhost:8080/xmlui/bitstream/20.500.12008/3465/5/license.txt528b6a3c8c7d0c6e28129d576e989607MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/3465/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/3465/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/3465/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALTR1209.pdfapplication/pdf117852http://localhost:8080/xmlui/bitstream/20.500.12008/3465/1/TR1209.pdfe39e366ab323d8faf9e6f3447fbb0678MD5120.500.12008/34652016-05-04 14:02:26.0oai:colibri.udelar.edu.uy:20.500.12008/3465VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMNCg0KDQpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIA0KDQpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdO+/vXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGRlcO+/vXNpdG8gZW4gQ09MSUJSSSwgbGEgVW5pdmVyc2lkYWQgZGUgUmVw77+9YmxpY2EgcHJvY2VkZXLvv70gYTogIA0KDQphKSBhcmNoaXZhciBt77+9cyBkZSB1bmEgY29waWEgZGUgbGEgb2JyYSBlbiBsb3Mgc2Vydmlkb3JlcyBkZSBsYSBVbml2ZXJzaWRhZCBhIGxvcyBlZmVjdG9zIGRlIGdhcmFudGl6YXIgYWNjZXNvLCBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNp77+9bg0KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nvv71uIHkgYWNjZXNpYmlsaWRhZCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8uDQpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuDQoNCg0KRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4NCg0KRWwgYXV0b3IgYXNlZ3VyYSBxdWUgbGEgb2JyYSBubyBpbmZyaWdlIG5pbmfvv71uIGRlcmVjaG8gc29icmUgdGVyY2Vyb3MsIHlhIHNlYSBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3Ryby4NCg0KRWwgYXV0b3IgZ2FyYW50aXphIHF1ZSBzaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgY3VhbGVzIG5vIHRpZW5lIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgeSBxdWUgZXNlIG1hdGVyaWFsIGN1eW9zIGRlcmVjaG9zIHNvbiBkZSB0ZXJjZXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZGVwb3NpdGFkbyBlbiBlbCBSZXBvc2l0b3Jpby4NCg0KRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuDQoNCkVsIGF1dG9yIHNlcu+/vSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcu+/vSByZXNwb25zYWJsZSBwb3IgbGFzIGV2ZW50dWFsZXMgdmlvbGFjaW9uZXMgYWwgZGVyZWNobyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZW4gcXVlIHB1ZWRhIGluY3VycmlyIGVsIGF1dG9yLg0KDQpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNp77+9biBkZSBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGxhIFVERUxBUiAgYWRvcHRhcu+/vSB0b2RhcyBsYXMgbWVkaWRhcyBuZWNlc2FyaWFzIHBhcmEgZXZpdGFyIGxhIGNvbnRpbnVhY2nvv71uIGRlIGRpY2hhIGluZnJhY2Np77+9biwgbGFzIHF1ZSBwb2Ry77+9biBpbmNsdWlyIGVsIHJldGlybyBkZWwgYWNjZXNvIGEgbG9zIGNvbnRlbmlkb3MgeS9vIG1ldGFkYXRvcyBkZWwgZG9jdW1lbnRvIHJlc3BlY3Rpdm8uDQoNCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoNCg0KDQpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLg0KDQpBdHJpYnVjae+/vW4g77+9IENvbXBhcnRpciBJZ3VhbCAoQ0MgLSBCeS1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgZGViZSBoYWNlcnNlIG1lZGlhbnRlIHVuYSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuDQoNCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuDQoNCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IENvbXBhcnRpciBJZ3VhbCAoQ0Mg77+9IEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjae+/vW4gZGUgbGFzIG9icmFzIGRlcml2YWRhcyBzZSBoYWdhIG1lZGlhbnRlIGxpY2VuY2lhIGlk77+9bnRpY2EgYSBsYSBkZSBsYSBvYnJhIG9yaWdpbmFsLCByZWNvbm9jaWVuZG8gYSBsb3MgYXV0b3Jlcy4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IFNpbiBEZXJpdmFkYXMgKENDIC0gQnktTkMtTkQpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSwgcGVybyBubyBzZSBwZXJtaXRlIGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzIHkgbm8gc2UgcGVybWl0ZSB1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBkZWJpZW5kbyByZWNvbm9jZXIgYWwgYXV0b3IuDQoNCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4NCg0KQ3VhbmRvIHNlIHNlbGVjY2lvbmUgdW5hIGxpY2VuY2lhIHF1ZSBoYWJpbGl0ZSB1c29zIGNvbWVyY2lhbGVzLCBlbCBkZXDvv71zaXRvIGRlYmVy77+9IHNlciBhY29tcGHvv71hZG8gZGVsIGF2YWwgZGVsIGplcmFyY2Egbe+/vXhpbW8gZGVsIFNlcnZpY2lvIGNvcnJlc3BvbmRpZW50ZS4NCg0KDQoNCg0KDQoNCg0KDQo=Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:56.388144COLIBRI - Universidad de la Repúblicafalse
spellingShingle The complexity of the K-reliability in networks constrained to diameter two
Canale, Eduardo
Network reliability
Survivability
Diameter constraints
Combinatorial problems
Computational complexity
Formal Verification
status_str publishedVersion
title The complexity of the K-reliability in networks constrained to diameter two
title_full The complexity of the K-reliability in networks constrained to diameter two
title_fullStr The complexity of the K-reliability in networks constrained to diameter two
title_full_unstemmed The complexity of the K-reliability in networks constrained to diameter two
title_short The complexity of the K-reliability in networks constrained to diameter two
title_sort The complexity of the K-reliability in networks constrained to diameter two
topic Network reliability
Survivability
Diameter constraints
Combinatorial problems
Computational complexity
Formal Verification
url http://hdl.handle.net/20.500.12008/3465