Extracción y procesamiento de datos para modelado de trayectorias académicas en cursos universitarios
Supervisor(es): Tansini, Libertad
Resumen:
En Uruguay, existen varios estudios sobre los altos niveles de deserción en la Universidad de la República. Uno de estos afirma que entre 1997 y 2007 el nivel de titulación fue de un 28 %, mientras que un 38% de los desertores abandonó la carrera antes de completar el primer año de estudio. Un reporte realizado en marzo de 2017 indica que casi el 50% de la población activa de la Facultad de Ingeniería aún no supera el primer año. Por este motivo resulta apremiante y oportuno desarrollar herramientas que permitan el monitoreo de la actividad estudiantil en cursos de la Universidad para asistir a docentes y autoridades, que mediante el procesamiento de los datos obtenidos posibiliten diagnosticar la situación de los estudiantes, permitiendo la formulación de prácticas educativas que garanticen el aprendizaje de los alumnos y acompañamiento de las etapas de aprendizaje de la trayectoria personal, identificando los exitos y las dificultades en el proceso educativo. El crecimiento y generalización de la tecnología educativa, la formación virtual y el uso de Internet como vehículo de aprendizaje ha dado lugar a la aparición de registros digitales que permiten saber cómo se relacionan los estudiantes con los entornos de aprendizaje, con qué frecuencia y en qué condiciones. Esto a su vez ofrece la posibilidad de contar con datos medibles y analizables, permitiendo comprender y optimizar el aprendizaje de los estudiantes y los entornos en los que se producen. Esta recolección y análisis de datos educativos está estrechamente vinculado con el campo de Learning Analytics o analítica del aprendizaje, una disciplina reciente con potencial transformador, relacionado con el aprendizaje personalizado y adaptativo, y con incidencia en todas las disciplinas educativas. El objetivo de este proyecto consiste en desarrollar una plataforma que facilite el acceso a datos encontrados en la plataforma Moodle con información del entorno virtual de aprendizaje de un curso de la Facultad de Ingeniería, la visualización y análisis de los datos recabados, así como también la generación de modelos predictivos para identificar situaciones de riesgo en determinados estudiantes, y la posibilidad de proveer feedback para los docentes sobre los motivos de dichas situaciones. La plataforma desarrollada se denomina Fing Analytics. La misma cuenta con una diversidad de funcionalidades, entre las cuales se destaca la posibilidad de predecir el resultado académico de los estudiantes que están cursando actualmente una asignatura en base a la actividad de estudiantes de años anteriores, aplicando tecnologías de aprendizaje automático y técnicas relacionadas a Learning Analytics.
2019 | |
Learning analytics Analítica de aprendizaje Entorno virtual de aprendizaje Datos educativos Fing Analytics |
|
Español | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/20932 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
_version_ | 1807523224384176128 |
---|---|
author | Heredia, Matías |
author2 | Rydel, Marcelo Saúl, Mario Severi, Giuliano |
author2_role | author author author |
author_facet | Heredia, Matías Rydel, Marcelo Saúl, Mario Severi, Giuliano |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 91437e7705896f16857503b975d67924 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/20932/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/20932/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/20932/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/20932/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/20932/1/tg-heredia-rydel-saul-severi.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Heredia Matías, Universidad de la República (Uruguay). Facultad de Ingeniería Rydel Marcelo, Universidad de la República (Uruguay). Facultad de Ingeniería Saúl Mario, Universidad de la República (Uruguay). Facultad de Ingeniería Severi Giuliano, Universidad de la República (Uruguay). Facultad de Ingeniería |
dc.creator.advisor.none.fl_str_mv | Tansini, Libertad |
dc.creator.none.fl_str_mv | Heredia, Matías Rydel, Marcelo Saúl, Mario Severi, Giuliano |
dc.date.accessioned.none.fl_str_mv | 2019-06-03T18:08:56Z |
dc.date.available.none.fl_str_mv | 2019-06-03T18:08:56Z |
dc.date.issued.none.fl_str_mv | 2019 |
dc.description.abstract.none.fl_txt_mv | En Uruguay, existen varios estudios sobre los altos niveles de deserción en la Universidad de la República. Uno de estos afirma que entre 1997 y 2007 el nivel de titulación fue de un 28 %, mientras que un 38% de los desertores abandonó la carrera antes de completar el primer año de estudio. Un reporte realizado en marzo de 2017 indica que casi el 50% de la población activa de la Facultad de Ingeniería aún no supera el primer año. Por este motivo resulta apremiante y oportuno desarrollar herramientas que permitan el monitoreo de la actividad estudiantil en cursos de la Universidad para asistir a docentes y autoridades, que mediante el procesamiento de los datos obtenidos posibiliten diagnosticar la situación de los estudiantes, permitiendo la formulación de prácticas educativas que garanticen el aprendizaje de los alumnos y acompañamiento de las etapas de aprendizaje de la trayectoria personal, identificando los exitos y las dificultades en el proceso educativo. El crecimiento y generalización de la tecnología educativa, la formación virtual y el uso de Internet como vehículo de aprendizaje ha dado lugar a la aparición de registros digitales que permiten saber cómo se relacionan los estudiantes con los entornos de aprendizaje, con qué frecuencia y en qué condiciones. Esto a su vez ofrece la posibilidad de contar con datos medibles y analizables, permitiendo comprender y optimizar el aprendizaje de los estudiantes y los entornos en los que se producen. Esta recolección y análisis de datos educativos está estrechamente vinculado con el campo de Learning Analytics o analítica del aprendizaje, una disciplina reciente con potencial transformador, relacionado con el aprendizaje personalizado y adaptativo, y con incidencia en todas las disciplinas educativas. El objetivo de este proyecto consiste en desarrollar una plataforma que facilite el acceso a datos encontrados en la plataforma Moodle con información del entorno virtual de aprendizaje de un curso de la Facultad de Ingeniería, la visualización y análisis de los datos recabados, así como también la generación de modelos predictivos para identificar situaciones de riesgo en determinados estudiantes, y la posibilidad de proveer feedback para los docentes sobre los motivos de dichas situaciones. La plataforma desarrollada se denomina Fing Analytics. La misma cuenta con una diversidad de funcionalidades, entre las cuales se destaca la posibilidad de predecir el resultado académico de los estudiantes que están cursando actualmente una asignatura en base a la actividad de estudiantes de años anteriores, aplicando tecnologías de aprendizaje automático y técnicas relacionadas a Learning Analytics. |
dc.format.extent.es.fl_str_mv | 123 p. |
dc.format.mimetype.en.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Heredia, M, Rydel, M, Saúl, M y Severi, G. Extracción y procesamiento de datos para modelado de trayectorias académicas en cursos universitarios [en línea] Tesis de grado. Montevideo : UR.FI.INCO, 2019. |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/20932 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | UR.FI.INCO |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Learning analytics Analítica de aprendizaje Entorno virtual de aprendizaje Datos educativos Fing Analytics |
dc.title.none.fl_str_mv | Extracción y procesamiento de datos para modelado de trayectorias académicas en cursos universitarios |
dc.type.es.fl_str_mv | Tesis de grado |
dc.type.none.fl_str_mv | info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | En Uruguay, existen varios estudios sobre los altos niveles de deserción en la Universidad de la República. Uno de estos afirma que entre 1997 y 2007 el nivel de titulación fue de un 28 %, mientras que un 38% de los desertores abandonó la carrera antes de completar el primer año de estudio. Un reporte realizado en marzo de 2017 indica que casi el 50% de la población activa de la Facultad de Ingeniería aún no supera el primer año. Por este motivo resulta apremiante y oportuno desarrollar herramientas que permitan el monitoreo de la actividad estudiantil en cursos de la Universidad para asistir a docentes y autoridades, que mediante el procesamiento de los datos obtenidos posibiliten diagnosticar la situación de los estudiantes, permitiendo la formulación de prácticas educativas que garanticen el aprendizaje de los alumnos y acompañamiento de las etapas de aprendizaje de la trayectoria personal, identificando los exitos y las dificultades en el proceso educativo. El crecimiento y generalización de la tecnología educativa, la formación virtual y el uso de Internet como vehículo de aprendizaje ha dado lugar a la aparición de registros digitales que permiten saber cómo se relacionan los estudiantes con los entornos de aprendizaje, con qué frecuencia y en qué condiciones. Esto a su vez ofrece la posibilidad de contar con datos medibles y analizables, permitiendo comprender y optimizar el aprendizaje de los estudiantes y los entornos en los que se producen. Esta recolección y análisis de datos educativos está estrechamente vinculado con el campo de Learning Analytics o analítica del aprendizaje, una disciplina reciente con potencial transformador, relacionado con el aprendizaje personalizado y adaptativo, y con incidencia en todas las disciplinas educativas. El objetivo de este proyecto consiste en desarrollar una plataforma que facilite el acceso a datos encontrados en la plataforma Moodle con información del entorno virtual de aprendizaje de un curso de la Facultad de Ingeniería, la visualización y análisis de los datos recabados, así como también la generación de modelos predictivos para identificar situaciones de riesgo en determinados estudiantes, y la posibilidad de proveer feedback para los docentes sobre los motivos de dichas situaciones. La plataforma desarrollada se denomina Fing Analytics. La misma cuenta con una diversidad de funcionalidades, entre las cuales se destaca la posibilidad de predecir el resultado académico de los estudiantes que están cursando actualmente una asignatura en base a la actividad de estudiantes de años anteriores, aplicando tecnologías de aprendizaje automático y técnicas relacionadas a Learning Analytics. |
eu_rights_str_mv | openAccess |
format | bachelorThesis |
id | COLIBRI_2cf4ae4da0115ae30d33e670329d4e40 |
identifier_str_mv | Heredia, M, Rydel, M, Saúl, M y Severi, G. Extracción y procesamiento de datos para modelado de trayectorias académicas en cursos universitarios [en línea] Tesis de grado. Montevideo : UR.FI.INCO, 2019. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/20932 |
publishDate | 2019 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
spelling | Heredia Matías, Universidad de la República (Uruguay). Facultad de IngenieríaRydel Marcelo, Universidad de la República (Uruguay). Facultad de IngenieríaSaúl Mario, Universidad de la República (Uruguay). Facultad de IngenieríaSeveri Giuliano, Universidad de la República (Uruguay). Facultad de Ingeniería2019-06-03T18:08:56Z2019-06-03T18:08:56Z2019Heredia, M, Rydel, M, Saúl, M y Severi, G. Extracción y procesamiento de datos para modelado de trayectorias académicas en cursos universitarios [en línea] Tesis de grado. Montevideo : UR.FI.INCO, 2019.https://hdl.handle.net/20.500.12008/20932En Uruguay, existen varios estudios sobre los altos niveles de deserción en la Universidad de la República. Uno de estos afirma que entre 1997 y 2007 el nivel de titulación fue de un 28 %, mientras que un 38% de los desertores abandonó la carrera antes de completar el primer año de estudio. Un reporte realizado en marzo de 2017 indica que casi el 50% de la población activa de la Facultad de Ingeniería aún no supera el primer año. Por este motivo resulta apremiante y oportuno desarrollar herramientas que permitan el monitoreo de la actividad estudiantil en cursos de la Universidad para asistir a docentes y autoridades, que mediante el procesamiento de los datos obtenidos posibiliten diagnosticar la situación de los estudiantes, permitiendo la formulación de prácticas educativas que garanticen el aprendizaje de los alumnos y acompañamiento de las etapas de aprendizaje de la trayectoria personal, identificando los exitos y las dificultades en el proceso educativo. El crecimiento y generalización de la tecnología educativa, la formación virtual y el uso de Internet como vehículo de aprendizaje ha dado lugar a la aparición de registros digitales que permiten saber cómo se relacionan los estudiantes con los entornos de aprendizaje, con qué frecuencia y en qué condiciones. Esto a su vez ofrece la posibilidad de contar con datos medibles y analizables, permitiendo comprender y optimizar el aprendizaje de los estudiantes y los entornos en los que se producen. Esta recolección y análisis de datos educativos está estrechamente vinculado con el campo de Learning Analytics o analítica del aprendizaje, una disciplina reciente con potencial transformador, relacionado con el aprendizaje personalizado y adaptativo, y con incidencia en todas las disciplinas educativas. El objetivo de este proyecto consiste en desarrollar una plataforma que facilite el acceso a datos encontrados en la plataforma Moodle con información del entorno virtual de aprendizaje de un curso de la Facultad de Ingeniería, la visualización y análisis de los datos recabados, así como también la generación de modelos predictivos para identificar situaciones de riesgo en determinados estudiantes, y la posibilidad de proveer feedback para los docentes sobre los motivos de dichas situaciones. La plataforma desarrollada se denomina Fing Analytics. La misma cuenta con una diversidad de funcionalidades, entre las cuales se destaca la posibilidad de predecir el resultado académico de los estudiantes que están cursando actualmente una asignatura en base a la actividad de estudiantes de años anteriores, aplicando tecnologías de aprendizaje automático y técnicas relacionadas a Learning Analytics.Submitted by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2019-06-03T18:08:56Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) tg-heredia-rydel-saul-severi.pdf: 3276815 bytes, checksum: 91437e7705896f16857503b975d67924 (MD5)Made available in DSpace on 2019-06-03T18:08:56Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) tg-heredia-rydel-saul-severi.pdf: 3276815 bytes, checksum: 91437e7705896f16857503b975d67924 (MD5) Previous issue date: 2019123 p.application/pdfesspaUR.FI.INCOLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)Learning analyticsAnalítica de aprendizajeEntorno virtual de aprendizajeDatos educativosFing AnalyticsExtracción y procesamiento de datos para modelado de trayectorias académicas en cursos universitariosTesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaHeredia, MatíasRydel, MarceloSaúl, MarioSeveri, GiulianoTansini, LibertadUniversidad de la República (Uruguay). Facultad de IngenieríaIngeniero en ComputaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/20932/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://localhost:8080/xmlui/bitstream/20.500.12008/20932/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/20932/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/20932/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALtg-heredia-rydel-saul-severi.pdftg-heredia-rydel-saul-severi.pdfapplication/pdf3276815http://localhost:8080/xmlui/bitstream/20.500.12008/20932/1/tg-heredia-rydel-saul-severi.pdf91437e7705896f16857503b975d67924MD5120.500.12008/209322024-04-12 14:06:40.218oai:colibri.udelar.edu.uy:20.500.12008/20932VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:17.209039COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Extracción y procesamiento de datos para modelado de trayectorias académicas en cursos universitarios Heredia, Matías Learning analytics Analítica de aprendizaje Entorno virtual de aprendizaje Datos educativos Fing Analytics |
status_str | acceptedVersion |
title | Extracción y procesamiento de datos para modelado de trayectorias académicas en cursos universitarios |
title_full | Extracción y procesamiento de datos para modelado de trayectorias académicas en cursos universitarios |
title_fullStr | Extracción y procesamiento de datos para modelado de trayectorias académicas en cursos universitarios |
title_full_unstemmed | Extracción y procesamiento de datos para modelado de trayectorias académicas en cursos universitarios |
title_short | Extracción y procesamiento de datos para modelado de trayectorias académicas en cursos universitarios |
title_sort | Extracción y procesamiento de datos para modelado de trayectorias académicas en cursos universitarios |
topic | Learning analytics Analítica de aprendizaje Entorno virtual de aprendizaje Datos educativos Fing Analytics |
url | https://hdl.handle.net/20.500.12008/20932 |