Almost global synchronization of symmetric Kuramoto Coupled Oscillators

Canale, Eduardo - Monzón, Pablo

Resumen:

A few decades ago, Y. Kuramoto introduced a mathematical model of weakly coupled oscillators that gave a formal framework to some of the works of A.T. Winfree on biological clocks [Kuramoto (1975), Kuramoto (1984), Winfree (1980)]. The model proposes the idea that several oscillators can interact in a way such that the individual oscillation properties change in order to achieve a global behavior for the interconnected system. The Kuramoto model serves as a good representation of many systems in several contexts: biology, engineering, physics, mechanics, etc. [Ermentrout (1985), York (1993), Strogatz (1994), Dussopt et al. (1999), Strogatz (2000), Jadbabaie et a. (2003), Rogge et al. (2004), Marshall et al. (2004), Moshtagh et al. (2005)]. Recently, many works on the control community have focused on the analysis of the Kuramoto model, specially the one with sinusoidal coupling. The consensus or collective synchronization of the individuals is particularly important in many applications representing coordination, cooperation, emerging behavior, etc. Local stability properties of the consensus have been initially explored in [Jadbabaie et al. (2004)]. It must be noted that little attention has been devoted to the influence of the underlying interconnection graph on the stability properties of the system. The reason could be the fact that the local stability does not depend on the interconnection [van Hemmen et al. (1993)]. Global or almost global dynamical properties were studied in [Monzón et al. (2005), Monzón (2006), Monzón et al. (2006)]. In these works, the relevance of the interconnection graph of the system was hinted. In the present chapter, we go deeper on the analysis of the relationships between the dynamical properties of the system and the algebraic properties of the interconnection graph, exploiting the strong algebraic structure that every graph has. We step forward into a classification of the interconnection graphs that ensure almost global attraction of the set of synchronized states. In Section 2 we present the Kuramoto model for sinusoidally coupled oscillators, its general properties and the notion of almost global synchronization; in Section 3 we review some basic facts on algebraic graph theory; the symmetric Kuramoto model and the block analysis are presented in Sections 4 and 5; Section 6 gives some examples and applications of the main results; Section 7 presents the problem of classification of almost global synchronizing topologies.


Detalles Bibliográficos
2008
Kuramoto model
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/38601
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522933025800192
author Canale, Eduardo
author2 Monzón, Pablo
author2_role author
author_facet Canale, Eduardo
Monzón, Pablo
author_role author
bitstream.checksum.fl_str_mv 7f2e2c17ef6585de66da58d1bfa8b5e1
9833653f73f7853880c94a6fead477b1
4afdbb8c545fd630ea7db775da747b2f
9da0b6dfac957114c6a7714714b86306
12190ba331b3af754e4b1f43b60b0817
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/38601/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/38601/2/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/38601/3/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/38601/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/38601/1/CM08a.pdf
collection COLIBRI
dc.creator.none.fl_str_mv Canale, Eduardo
Monzón, Pablo
dc.date.accessioned.none.fl_str_mv 2023-08-01T20:32:58Z
dc.date.available.none.fl_str_mv 2023-08-01T20:32:58Z
dc.date.issued.es.fl_str_mv 2008
dc.date.submitted.es.fl_str_mv 20230801
dc.description.abstract.none.fl_txt_mv A few decades ago, Y. Kuramoto introduced a mathematical model of weakly coupled oscillators that gave a formal framework to some of the works of A.T. Winfree on biological clocks [Kuramoto (1975), Kuramoto (1984), Winfree (1980)]. The model proposes the idea that several oscillators can interact in a way such that the individual oscillation properties change in order to achieve a global behavior for the interconnected system. The Kuramoto model serves as a good representation of many systems in several contexts: biology, engineering, physics, mechanics, etc. [Ermentrout (1985), York (1993), Strogatz (1994), Dussopt et al. (1999), Strogatz (2000), Jadbabaie et a. (2003), Rogge et al. (2004), Marshall et al. (2004), Moshtagh et al. (2005)]. Recently, many works on the control community have focused on the analysis of the Kuramoto model, specially the one with sinusoidal coupling. The consensus or collective synchronization of the individuals is particularly important in many applications representing coordination, cooperation, emerging behavior, etc. Local stability properties of the consensus have been initially explored in [Jadbabaie et al. (2004)]. It must be noted that little attention has been devoted to the influence of the underlying interconnection graph on the stability properties of the system. The reason could be the fact that the local stability does not depend on the interconnection [van Hemmen et al. (1993)]. Global or almost global dynamical properties were studied in [Monzón et al. (2005), Monzón (2006), Monzón et al. (2006)]. In these works, the relevance of the interconnection graph of the system was hinted. In the present chapter, we go deeper on the analysis of the relationships between the dynamical properties of the system and the algebraic properties of the interconnection graph, exploiting the strong algebraic structure that every graph has. We step forward into a classification of the interconnection graphs that ensure almost global attraction of the set of synchronized states. In Section 2 we present the Kuramoto model for sinusoidally coupled oscillators, its general properties and the notion of almost global synchronization; in Section 3 we review some basic facts on algebraic graph theory; the symmetric Kuramoto model and the block analysis are presented in Sections 4 and 5; Section 6 gives some examples and applications of the main results; Section 7 presents the problem of classification of almost global synchronizing topologies.
dc.identifier.citation.es.fl_str_mv Canale, E, Monzón, P. “Almost global synchronization of symmetric Kuramoto Coupled Oscillators”. Husek, P (ed.) Systems Structure and Control. IntechOpen, 2008.. doi: 10.5772/6026.
dc.identifier.doi.es.fl_str_mv doi: 10.5772/6026.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/38601
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv IntechOpen
dc.relation.ispartof.es.fl_str_mv Husek, P. (ed.) Systems Structure and Control. IntechOpen, 2008.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Kuramoto model
dc.title.none.fl_str_mv Almost global synchronization of symmetric Kuramoto Coupled Oscillators
dc.type.es.fl_str_mv Capítulo de libro
dc.type.none.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description A few decades ago, Y. Kuramoto introduced a mathematical model of weakly coupled oscillators that gave a formal framework to some of the works of A.T. Winfree on biological clocks [Kuramoto (1975), Kuramoto (1984), Winfree (1980)]. The model proposes the idea that several oscillators can interact in a way such that the individual oscillation properties change in order to achieve a global behavior for the interconnected system. The Kuramoto model serves as a good representation of many systems in several contexts: biology, engineering, physics, mechanics, etc. [Ermentrout (1985), York (1993), Strogatz (1994), Dussopt et al. (1999), Strogatz (2000), Jadbabaie et a. (2003), Rogge et al. (2004), Marshall et al. (2004), Moshtagh et al. (2005)]. Recently, many works on the control community have focused on the analysis of the Kuramoto model, specially the one with sinusoidal coupling. The consensus or collective synchronization of the individuals is particularly important in many applications representing coordination, cooperation, emerging behavior, etc. Local stability properties of the consensus have been initially explored in [Jadbabaie et al. (2004)]. It must be noted that little attention has been devoted to the influence of the underlying interconnection graph on the stability properties of the system. The reason could be the fact that the local stability does not depend on the interconnection [van Hemmen et al. (1993)]. Global or almost global dynamical properties were studied in [Monzón et al. (2005), Monzón (2006), Monzón et al. (2006)]. In these works, the relevance of the interconnection graph of the system was hinted. In the present chapter, we go deeper on the analysis of the relationships between the dynamical properties of the system and the algebraic properties of the interconnection graph, exploiting the strong algebraic structure that every graph has. We step forward into a classification of the interconnection graphs that ensure almost global attraction of the set of synchronized states. In Section 2 we present the Kuramoto model for sinusoidally coupled oscillators, its general properties and the notion of almost global synchronization; in Section 3 we review some basic facts on algebraic graph theory; the symmetric Kuramoto model and the block analysis are presented in Sections 4 and 5; Section 6 gives some examples and applications of the main results; Section 7 presents the problem of classification of almost global synchronizing topologies.
eu_rights_str_mv openAccess
format bookPart
id COLIBRI_2c7b517413aebf7fe9c797ebc8d6a856
identifier_str_mv Canale, E, Monzón, P. “Almost global synchronization of symmetric Kuramoto Coupled Oscillators”. Husek, P (ed.) Systems Structure and Control. IntechOpen, 2008.. doi: 10.5772/6026.
doi: 10.5772/6026.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/38601
publishDate 2008
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling 2023-08-01T20:32:58Z2023-08-01T20:32:58Z200820230801Canale, E, Monzón, P. “Almost global synchronization of symmetric Kuramoto Coupled Oscillators”. Husek, P (ed.) Systems Structure and Control. IntechOpen, 2008.. doi: 10.5772/6026.https://hdl.handle.net/20.500.12008/38601doi: 10.5772/6026.A few decades ago, Y. Kuramoto introduced a mathematical model of weakly coupled oscillators that gave a formal framework to some of the works of A.T. Winfree on biological clocks [Kuramoto (1975), Kuramoto (1984), Winfree (1980)]. The model proposes the idea that several oscillators can interact in a way such that the individual oscillation properties change in order to achieve a global behavior for the interconnected system. The Kuramoto model serves as a good representation of many systems in several contexts: biology, engineering, physics, mechanics, etc. [Ermentrout (1985), York (1993), Strogatz (1994), Dussopt et al. (1999), Strogatz (2000), Jadbabaie et a. (2003), Rogge et al. (2004), Marshall et al. (2004), Moshtagh et al. (2005)]. Recently, many works on the control community have focused on the analysis of the Kuramoto model, specially the one with sinusoidal coupling. The consensus or collective synchronization of the individuals is particularly important in many applications representing coordination, cooperation, emerging behavior, etc. Local stability properties of the consensus have been initially explored in [Jadbabaie et al. (2004)]. It must be noted that little attention has been devoted to the influence of the underlying interconnection graph on the stability properties of the system. The reason could be the fact that the local stability does not depend on the interconnection [van Hemmen et al. (1993)]. Global or almost global dynamical properties were studied in [Monzón et al. (2005), Monzón (2006), Monzón et al. (2006)]. In these works, the relevance of the interconnection graph of the system was hinted. In the present chapter, we go deeper on the analysis of the relationships between the dynamical properties of the system and the algebraic properties of the interconnection graph, exploiting the strong algebraic structure that every graph has. We step forward into a classification of the interconnection graphs that ensure almost global attraction of the set of synchronized states. In Section 2 we present the Kuramoto model for sinusoidally coupled oscillators, its general properties and the notion of almost global synchronization; in Section 3 we review some basic facts on algebraic graph theory; the symmetric Kuramoto model and the block analysis are presented in Sections 4 and 5; Section 6 gives some examples and applications of the main results; Section 7 presents the problem of classification of almost global synchronizing topologies.Made available in DSpace on 2023-08-01T20:32:58Z (GMT). No. of bitstreams: 5 CM08a.pdf: 607581 bytes, checksum: 12190ba331b3af754e4b1f43b60b0817 (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4194 bytes, checksum: 7f2e2c17ef6585de66da58d1bfa8b5e1 (MD5) Previous issue date: 2008enengIntechOpenHusek, P. (ed.) Systems Structure and Control. IntechOpen, 2008.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Kuramoto modelAlmost global synchronization of symmetric Kuramoto Coupled OscillatorsCapítulo de libroinfo:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaCanale, EduardoMonzón, PabloLICENSElicense.txttext/plain4194http://localhost:8080/xmlui/bitstream/20.500.12008/38601/5/license.txt7f2e2c17ef6585de66da58d1bfa8b5e1MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/38601/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/38601/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/38601/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALCM08a.pdfapplication/pdf607581http://localhost:8080/xmlui/bitstream/20.500.12008/38601/1/CM08a.pdf12190ba331b3af754e4b1f43b60b0817MD5120.500.12008/386012023-08-01 17:32:58.621oai:colibri.udelar.edu.uy:20.500.12008/38601VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIAoKQWNlcHRhbmRvIGVsIGF1dG9yIGVzdG9zIHTvv71ybWlub3MgeSBjb25kaWNpb25lcyBkZSBkZXDvv71zaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcO+/vWJsaWNhIHByb2NlZGVy77+9IGE6ICAKCmEpIGFyY2hpdmFyIG3vv71zIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nvv71uCmIpIGNvbnZlcnRpciBsYSBvYnJhIGEgb3Ryb3MgZm9ybWF0b3Mgc2kgZnVlcmEgbmVjZXNhcmlvICBwYXJhIGZhY2lsaXRhciBzdSBwcmVzZXJ2YWNp77+9biB5IGFjY2VzaWJpbGlkYWQgc2luIGFsdGVyYXIgc3UgY29udGVuaWRvLgpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4KCkVsIGF1dG9yIGFzZWd1cmEgcXVlIGxhIG9icmEgbm8gaW5mcmlnZSBuaW5n77+9biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdO+/vSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZW4gZWwgdGV4dG8gbyBjb250ZW5pZG8gZGVsIGRvY3VtZW50byBkZXBvc2l0YWRvIGVuIGVsIFJlcG9zaXRvcmlvLgoKRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLvv70gcmVzcG9uc2FibGUgZGVsIGNvbnRlbmlkbyBkZSBsb3MgZG9jdW1lbnRvcyBxdWUgZGVwb3NpdGEuIExhIFVERUxBUiBubyBzZXLvv70gcmVzcG9uc2FibGUgcG9yIGxhcyBldmVudHVhbGVzIHZpb2xhY2lvbmVzIGFsIGRlcmVjaG8gZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIHF1ZSBwdWVkYSBpbmN1cnJpciBlbCBhdXRvci4KCkFudGUgY3VhbHF1aWVyIGRlbnVuY2lhIGRlIHZpb2xhY2nvv71uIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFy77+9IHRvZGFzIGxhcyBtZWRpZGFzIG5lY2VzYXJpYXMgcGFyYSBldml0YXIgbGEgY29udGludWFjae+/vW4gZGUgZGljaGEgaW5mcmFjY2nvv71uLCBsYXMgcXVlIHBvZHLvv71uIGluY2x1aXIgZWwgcmV0aXJvIGRlbCBhY2Nlc28gYSBsb3MgY29udGVuaWRvcyB5L28gbWV0YWRhdG9zIGRlbCBkb2N1bWVudG8gcmVzcGVjdGl2by4KCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLgoKQXRyaWJ1Y2nvv71uIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIC0gQnktU0EpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgcGVybyBsYSBkaXN0cmlidWNp77+9biBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTvv71udGljYSBhIGxhIGRlIGxhIG9icmEgb3JpZ2luYWwsIHJlY29ub2NpZW5kbyBhIGxvcyBhdXRvcmVzLgoKQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwgKENDIC0gQnktTkMpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBzaWVtcHJlIHkgY3VhbmRvIGVzb3MgdXNvcyBubyB0ZW5nYW4gZmluZXMgY29tZXJjaWFsZXMsIHJlY29ub2NpZW5kbyBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIO+/vSBCeS1OQy1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIHNpZW1wcmUgeSBjdWFuZG8gZXNvcyB1c29zIG5vIHRlbmdhbiBmaW5lcyBjb21lcmNpYWxlcyB5IGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgc2UgaGFnYSBtZWRpYW50ZSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjae+/vW4g77+9IE5vIENvbWVyY2lhbCDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1OQy1ORCk6IFBlcm1pdGUgdXNhciBsYSBvYnJhLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMgeSBubyBzZSBwZXJtaXRlIHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4KCkN1YW5kbyBzZSBzZWxlY2Npb25lIHVuYSBsaWNlbmNpYSBxdWUgaGFiaWxpdGUgdXNvcyBjb21lcmNpYWxlcywgZWwgZGVw77+9c2l0byBkZWJlcu+/vSBzZXIgYWNvbXBh77+9YWRvIGRlbCBhdmFsIGRlbCBqZXJhcmNhIG3vv714aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCgoKCgoKCgoKUniversidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:21.562081COLIBRI - Universidad de la Repúblicafalse
spellingShingle Almost global synchronization of symmetric Kuramoto Coupled Oscillators
Canale, Eduardo
Kuramoto model
status_str publishedVersion
title Almost global synchronization of symmetric Kuramoto Coupled Oscillators
title_full Almost global synchronization of symmetric Kuramoto Coupled Oscillators
title_fullStr Almost global synchronization of symmetric Kuramoto Coupled Oscillators
title_full_unstemmed Almost global synchronization of symmetric Kuramoto Coupled Oscillators
title_short Almost global synchronization of symmetric Kuramoto Coupled Oscillators
title_sort Almost global synchronization of symmetric Kuramoto Coupled Oscillators
topic Kuramoto model
url https://hdl.handle.net/20.500.12008/38601