Almost global synchronization of symmetric Kuramoto Coupled Oscillators
Resumen:
A few decades ago, Y. Kuramoto introduced a mathematical model of weakly coupled oscillators that gave a formal framework to some of the works of A.T. Winfree on biological clocks [Kuramoto (1975), Kuramoto (1984), Winfree (1980)]. The model proposes the idea that several oscillators can interact in a way such that the individual oscillation properties change in order to achieve a global behavior for the interconnected system. The Kuramoto model serves as a good representation of many systems in several contexts: biology, engineering, physics, mechanics, etc. [Ermentrout (1985), York (1993), Strogatz (1994), Dussopt et al. (1999), Strogatz (2000), Jadbabaie et a. (2003), Rogge et al. (2004), Marshall et al. (2004), Moshtagh et al. (2005)]. Recently, many works on the control community have focused on the analysis of the Kuramoto model, specially the one with sinusoidal coupling. The consensus or collective synchronization of the individuals is particularly important in many applications representing coordination, cooperation, emerging behavior, etc. Local stability properties of the consensus have been initially explored in [Jadbabaie et al. (2004)]. It must be noted that little attention has been devoted to the influence of the underlying interconnection graph on the stability properties of the system. The reason could be the fact that the local stability does not depend on the interconnection [van Hemmen et al. (1993)]. Global or almost global dynamical properties were studied in [Monzón et al. (2005), Monzón (2006), Monzón et al. (2006)]. In these works, the relevance of the interconnection graph of the system was hinted. In the present chapter, we go deeper on the analysis of the relationships between the dynamical properties of the system and the algebraic properties of the interconnection graph, exploiting the strong algebraic structure that every graph has. We step forward into a classification of the interconnection graphs that ensure almost global attraction of the set of synchronized states. In Section 2 we present the Kuramoto model for sinusoidally coupled oscillators, its general properties and the notion of almost global synchronization; in Section 3 we review some basic facts on algebraic graph theory; the symmetric Kuramoto model and the block analysis are presented in Sections 4 and 5; Section 6 gives some examples and applications of the main results; Section 7 presents the problem of classification of almost global synchronizing topologies.
2008 | |
Kuramoto model | |
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/38601 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522933025800192 |
---|---|
author | Canale, Eduardo |
author2 | Monzón, Pablo |
author2_role | author |
author_facet | Canale, Eduardo Monzón, Pablo |
author_role | author |
bitstream.checksum.fl_str_mv | 7f2e2c17ef6585de66da58d1bfa8b5e1 9833653f73f7853880c94a6fead477b1 4afdbb8c545fd630ea7db775da747b2f 9da0b6dfac957114c6a7714714b86306 12190ba331b3af754e4b1f43b60b0817 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/38601/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/38601/2/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/38601/3/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/38601/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/38601/1/CM08a.pdf |
collection | COLIBRI |
dc.creator.none.fl_str_mv | Canale, Eduardo Monzón, Pablo |
dc.date.accessioned.none.fl_str_mv | 2023-08-01T20:32:58Z |
dc.date.available.none.fl_str_mv | 2023-08-01T20:32:58Z |
dc.date.issued.es.fl_str_mv | 2008 |
dc.date.submitted.es.fl_str_mv | 20230801 |
dc.description.abstract.none.fl_txt_mv | A few decades ago, Y. Kuramoto introduced a mathematical model of weakly coupled oscillators that gave a formal framework to some of the works of A.T. Winfree on biological clocks [Kuramoto (1975), Kuramoto (1984), Winfree (1980)]. The model proposes the idea that several oscillators can interact in a way such that the individual oscillation properties change in order to achieve a global behavior for the interconnected system. The Kuramoto model serves as a good representation of many systems in several contexts: biology, engineering, physics, mechanics, etc. [Ermentrout (1985), York (1993), Strogatz (1994), Dussopt et al. (1999), Strogatz (2000), Jadbabaie et a. (2003), Rogge et al. (2004), Marshall et al. (2004), Moshtagh et al. (2005)]. Recently, many works on the control community have focused on the analysis of the Kuramoto model, specially the one with sinusoidal coupling. The consensus or collective synchronization of the individuals is particularly important in many applications representing coordination, cooperation, emerging behavior, etc. Local stability properties of the consensus have been initially explored in [Jadbabaie et al. (2004)]. It must be noted that little attention has been devoted to the influence of the underlying interconnection graph on the stability properties of the system. The reason could be the fact that the local stability does not depend on the interconnection [van Hemmen et al. (1993)]. Global or almost global dynamical properties were studied in [Monzón et al. (2005), Monzón (2006), Monzón et al. (2006)]. In these works, the relevance of the interconnection graph of the system was hinted. In the present chapter, we go deeper on the analysis of the relationships between the dynamical properties of the system and the algebraic properties of the interconnection graph, exploiting the strong algebraic structure that every graph has. We step forward into a classification of the interconnection graphs that ensure almost global attraction of the set of synchronized states. In Section 2 we present the Kuramoto model for sinusoidally coupled oscillators, its general properties and the notion of almost global synchronization; in Section 3 we review some basic facts on algebraic graph theory; the symmetric Kuramoto model and the block analysis are presented in Sections 4 and 5; Section 6 gives some examples and applications of the main results; Section 7 presents the problem of classification of almost global synchronizing topologies. |
dc.identifier.citation.es.fl_str_mv | Canale, E, Monzón, P. “Almost global synchronization of symmetric Kuramoto Coupled Oscillators”. Husek, P (ed.) Systems Structure and Control. IntechOpen, 2008.. doi: 10.5772/6026. |
dc.identifier.doi.es.fl_str_mv | doi: 10.5772/6026. |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/38601 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | IntechOpen |
dc.relation.ispartof.es.fl_str_mv | Husek, P. (ed.) Systems Structure and Control. IntechOpen, 2008. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Kuramoto model |
dc.title.none.fl_str_mv | Almost global synchronization of symmetric Kuramoto Coupled Oscillators |
dc.type.es.fl_str_mv | Capítulo de libro |
dc.type.none.fl_str_mv | info:eu-repo/semantics/bookPart |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | A few decades ago, Y. Kuramoto introduced a mathematical model of weakly coupled oscillators that gave a formal framework to some of the works of A.T. Winfree on biological clocks [Kuramoto (1975), Kuramoto (1984), Winfree (1980)]. The model proposes the idea that several oscillators can interact in a way such that the individual oscillation properties change in order to achieve a global behavior for the interconnected system. The Kuramoto model serves as a good representation of many systems in several contexts: biology, engineering, physics, mechanics, etc. [Ermentrout (1985), York (1993), Strogatz (1994), Dussopt et al. (1999), Strogatz (2000), Jadbabaie et a. (2003), Rogge et al. (2004), Marshall et al. (2004), Moshtagh et al. (2005)]. Recently, many works on the control community have focused on the analysis of the Kuramoto model, specially the one with sinusoidal coupling. The consensus or collective synchronization of the individuals is particularly important in many applications representing coordination, cooperation, emerging behavior, etc. Local stability properties of the consensus have been initially explored in [Jadbabaie et al. (2004)]. It must be noted that little attention has been devoted to the influence of the underlying interconnection graph on the stability properties of the system. The reason could be the fact that the local stability does not depend on the interconnection [van Hemmen et al. (1993)]. Global or almost global dynamical properties were studied in [Monzón et al. (2005), Monzón (2006), Monzón et al. (2006)]. In these works, the relevance of the interconnection graph of the system was hinted. In the present chapter, we go deeper on the analysis of the relationships between the dynamical properties of the system and the algebraic properties of the interconnection graph, exploiting the strong algebraic structure that every graph has. We step forward into a classification of the interconnection graphs that ensure almost global attraction of the set of synchronized states. In Section 2 we present the Kuramoto model for sinusoidally coupled oscillators, its general properties and the notion of almost global synchronization; in Section 3 we review some basic facts on algebraic graph theory; the symmetric Kuramoto model and the block analysis are presented in Sections 4 and 5; Section 6 gives some examples and applications of the main results; Section 7 presents the problem of classification of almost global synchronizing topologies. |
eu_rights_str_mv | openAccess |
format | bookPart |
id | COLIBRI_2c7b517413aebf7fe9c797ebc8d6a856 |
identifier_str_mv | Canale, E, Monzón, P. “Almost global synchronization of symmetric Kuramoto Coupled Oscillators”. Husek, P (ed.) Systems Structure and Control. IntechOpen, 2008.. doi: 10.5772/6026. doi: 10.5772/6026. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/38601 |
publishDate | 2008 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | 2023-08-01T20:32:58Z2023-08-01T20:32:58Z200820230801Canale, E, Monzón, P. “Almost global synchronization of symmetric Kuramoto Coupled Oscillators”. Husek, P (ed.) Systems Structure and Control. IntechOpen, 2008.. doi: 10.5772/6026.https://hdl.handle.net/20.500.12008/38601doi: 10.5772/6026.A few decades ago, Y. Kuramoto introduced a mathematical model of weakly coupled oscillators that gave a formal framework to some of the works of A.T. Winfree on biological clocks [Kuramoto (1975), Kuramoto (1984), Winfree (1980)]. The model proposes the idea that several oscillators can interact in a way such that the individual oscillation properties change in order to achieve a global behavior for the interconnected system. The Kuramoto model serves as a good representation of many systems in several contexts: biology, engineering, physics, mechanics, etc. [Ermentrout (1985), York (1993), Strogatz (1994), Dussopt et al. (1999), Strogatz (2000), Jadbabaie et a. (2003), Rogge et al. (2004), Marshall et al. (2004), Moshtagh et al. (2005)]. Recently, many works on the control community have focused on the analysis of the Kuramoto model, specially the one with sinusoidal coupling. The consensus or collective synchronization of the individuals is particularly important in many applications representing coordination, cooperation, emerging behavior, etc. Local stability properties of the consensus have been initially explored in [Jadbabaie et al. (2004)]. It must be noted that little attention has been devoted to the influence of the underlying interconnection graph on the stability properties of the system. The reason could be the fact that the local stability does not depend on the interconnection [van Hemmen et al. (1993)]. Global or almost global dynamical properties were studied in [Monzón et al. (2005), Monzón (2006), Monzón et al. (2006)]. In these works, the relevance of the interconnection graph of the system was hinted. In the present chapter, we go deeper on the analysis of the relationships between the dynamical properties of the system and the algebraic properties of the interconnection graph, exploiting the strong algebraic structure that every graph has. We step forward into a classification of the interconnection graphs that ensure almost global attraction of the set of synchronized states. In Section 2 we present the Kuramoto model for sinusoidally coupled oscillators, its general properties and the notion of almost global synchronization; in Section 3 we review some basic facts on algebraic graph theory; the symmetric Kuramoto model and the block analysis are presented in Sections 4 and 5; Section 6 gives some examples and applications of the main results; Section 7 presents the problem of classification of almost global synchronizing topologies.Made available in DSpace on 2023-08-01T20:32:58Z (GMT). No. of bitstreams: 5 CM08a.pdf: 607581 bytes, checksum: 12190ba331b3af754e4b1f43b60b0817 (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4194 bytes, checksum: 7f2e2c17ef6585de66da58d1bfa8b5e1 (MD5) Previous issue date: 2008enengIntechOpenHusek, P. (ed.) Systems Structure and Control. IntechOpen, 2008.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Kuramoto modelAlmost global synchronization of symmetric Kuramoto Coupled OscillatorsCapítulo de libroinfo:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaCanale, EduardoMonzón, PabloLICENSElicense.txttext/plain4194http://localhost:8080/xmlui/bitstream/20.500.12008/38601/5/license.txt7f2e2c17ef6585de66da58d1bfa8b5e1MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/38601/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/38601/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/38601/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALCM08a.pdfapplication/pdf607581http://localhost:8080/xmlui/bitstream/20.500.12008/38601/1/CM08a.pdf12190ba331b3af754e4b1f43b60b0817MD5120.500.12008/386012023-08-01 17:32:58.621oai:colibri.udelar.edu.uy:20.500.12008/38601VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIAoKQWNlcHRhbmRvIGVsIGF1dG9yIGVzdG9zIHTvv71ybWlub3MgeSBjb25kaWNpb25lcyBkZSBkZXDvv71zaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcO+/vWJsaWNhIHByb2NlZGVy77+9IGE6ICAKCmEpIGFyY2hpdmFyIG3vv71zIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nvv71uCmIpIGNvbnZlcnRpciBsYSBvYnJhIGEgb3Ryb3MgZm9ybWF0b3Mgc2kgZnVlcmEgbmVjZXNhcmlvICBwYXJhIGZhY2lsaXRhciBzdSBwcmVzZXJ2YWNp77+9biB5IGFjY2VzaWJpbGlkYWQgc2luIGFsdGVyYXIgc3UgY29udGVuaWRvLgpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4KCkVsIGF1dG9yIGFzZWd1cmEgcXVlIGxhIG9icmEgbm8gaW5mcmlnZSBuaW5n77+9biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdO+/vSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZW4gZWwgdGV4dG8gbyBjb250ZW5pZG8gZGVsIGRvY3VtZW50byBkZXBvc2l0YWRvIGVuIGVsIFJlcG9zaXRvcmlvLgoKRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLvv70gcmVzcG9uc2FibGUgZGVsIGNvbnRlbmlkbyBkZSBsb3MgZG9jdW1lbnRvcyBxdWUgZGVwb3NpdGEuIExhIFVERUxBUiBubyBzZXLvv70gcmVzcG9uc2FibGUgcG9yIGxhcyBldmVudHVhbGVzIHZpb2xhY2lvbmVzIGFsIGRlcmVjaG8gZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIHF1ZSBwdWVkYSBpbmN1cnJpciBlbCBhdXRvci4KCkFudGUgY3VhbHF1aWVyIGRlbnVuY2lhIGRlIHZpb2xhY2nvv71uIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFy77+9IHRvZGFzIGxhcyBtZWRpZGFzIG5lY2VzYXJpYXMgcGFyYSBldml0YXIgbGEgY29udGludWFjae+/vW4gZGUgZGljaGEgaW5mcmFjY2nvv71uLCBsYXMgcXVlIHBvZHLvv71uIGluY2x1aXIgZWwgcmV0aXJvIGRlbCBhY2Nlc28gYSBsb3MgY29udGVuaWRvcyB5L28gbWV0YWRhdG9zIGRlbCBkb2N1bWVudG8gcmVzcGVjdGl2by4KCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLgoKQXRyaWJ1Y2nvv71uIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIC0gQnktU0EpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgcGVybyBsYSBkaXN0cmlidWNp77+9biBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTvv71udGljYSBhIGxhIGRlIGxhIG9icmEgb3JpZ2luYWwsIHJlY29ub2NpZW5kbyBhIGxvcyBhdXRvcmVzLgoKQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwgKENDIC0gQnktTkMpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBzaWVtcHJlIHkgY3VhbmRvIGVzb3MgdXNvcyBubyB0ZW5nYW4gZmluZXMgY29tZXJjaWFsZXMsIHJlY29ub2NpZW5kbyBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIO+/vSBCeS1OQy1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIHNpZW1wcmUgeSBjdWFuZG8gZXNvcyB1c29zIG5vIHRlbmdhbiBmaW5lcyBjb21lcmNpYWxlcyB5IGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgc2UgaGFnYSBtZWRpYW50ZSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjae+/vW4g77+9IE5vIENvbWVyY2lhbCDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1OQy1ORCk6IFBlcm1pdGUgdXNhciBsYSBvYnJhLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMgeSBubyBzZSBwZXJtaXRlIHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4KCkN1YW5kbyBzZSBzZWxlY2Npb25lIHVuYSBsaWNlbmNpYSBxdWUgaGFiaWxpdGUgdXNvcyBjb21lcmNpYWxlcywgZWwgZGVw77+9c2l0byBkZWJlcu+/vSBzZXIgYWNvbXBh77+9YWRvIGRlbCBhdmFsIGRlbCBqZXJhcmNhIG3vv714aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCgoKCgoKCgoKUniversidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:21.562081COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Almost global synchronization of symmetric Kuramoto Coupled Oscillators Canale, Eduardo Kuramoto model |
status_str | publishedVersion |
title | Almost global synchronization of symmetric Kuramoto Coupled Oscillators |
title_full | Almost global synchronization of symmetric Kuramoto Coupled Oscillators |
title_fullStr | Almost global synchronization of symmetric Kuramoto Coupled Oscillators |
title_full_unstemmed | Almost global synchronization of symmetric Kuramoto Coupled Oscillators |
title_short | Almost global synchronization of symmetric Kuramoto Coupled Oscillators |
title_sort | Almost global synchronization of symmetric Kuramoto Coupled Oscillators |
topic | Kuramoto model |
url | https://hdl.handle.net/20.500.12008/38601 |