Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico

Espiga Chappe, Alejandro

Supervisor(es): Belzarena, Pablo

Resumen:

Las redes inalámbricas malladas (Wireless Mesh Networks - WMN) constituyen un tipo especial de redes inalámbricas multi-saltos que actualmente tienen un elevado interés académico y comercial. Se caracterizan por su autoorganización, auto-configuración y auto-reparación; lo que permite un rápido despliegue, fácil mantenimiento, bajo costo, alta escalabilidad y servicios confiables. Debido a estas ventajas, las organizaciones internacionales de normalización están trabajando activamente en definir especificaciones para este tipo de redes, por ejemplo, IEEE 802.11s, IEEE 802.15, IEEE 802.16. Dichas redes se conectan a otras, como por ejemplo Internet, a través de dispositivos llamados \gateways" o \puertas de enlace". También se utilizan los términos \pasarela" o \portal" para referirse a estos dispositivos. Algunas de estas redes suelen tener una única puerta de enlace o portal de conexión a Internet. No obstante, dicho portal puede estar congestionado y convertirse en un cuello de botella para toda la red. Para mitigar este problema, es frecuente instalar varios portales para distribuir la carga y mejorar el rendimiento. A este tipo de redes se les conoce como redes inalámbricas mallada multi-portales. Sin embargo, el hecho de agregar más puertas de enlaces no significa necesariamente un aumento proporcional en la capacidad nominal de la red. Se necesita un esquema de selección eficiente cuando se tiene varios portales. En este trabajo se presenta un mecanismo de selección de portal utilizando aprendizaje estadístico. Concretamente la propuesta se basa en aplicar una técnica del aprendizaje estadístico supervisado llamada \Support Vector Machines" (SVM). Este mecanismo es simple, orientado a flujo, independiente de la arquitectura y distribuido, además de no requerir modificaciones en el software existente en los dispositivos de la red. De acuerdo a las simulaciones este mecanismo logra desde el punto de vista de optar por el mejor portal y distribuir el tráfico entre los mismos, buenos resultados, incluso al poder estimar el valor del \throughput" es viable utilizar este mecanismo para el control de admisión.


Detalles Bibliográficos
2012
Redes inalámbricas malladas
Aprendizaje estadístico
Support Vector Machine
Redes Mesh
Wireless Mesh Networks
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/24189
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523175627489280
author Espiga Chappe, Alejandro
author_facet Espiga Chappe, Alejandro
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
d77747f0b79dbc4c411d2260a3d95cd2
1996b8461bc290aef6a27d78c67b6b52
acf15b38003c43e2a84c30e523fd3204
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/24189/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/24189/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/24189/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/24189/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/24189/1/Esp12.PDF
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Espiga Chappe Alejandro, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.advisor.none.fl_str_mv Belzarena, Pablo
dc.creator.none.fl_str_mv Espiga Chappe, Alejandro
dc.date.accessioned.none.fl_str_mv 2020-06-03T21:41:34Z
dc.date.available.none.fl_str_mv 2020-06-03T21:41:34Z
dc.date.issued.none.fl_str_mv 2012
dc.description.abstract.none.fl_txt_mv Las redes inalámbricas malladas (Wireless Mesh Networks - WMN) constituyen un tipo especial de redes inalámbricas multi-saltos que actualmente tienen un elevado interés académico y comercial. Se caracterizan por su autoorganización, auto-configuración y auto-reparación; lo que permite un rápido despliegue, fácil mantenimiento, bajo costo, alta escalabilidad y servicios confiables. Debido a estas ventajas, las organizaciones internacionales de normalización están trabajando activamente en definir especificaciones para este tipo de redes, por ejemplo, IEEE 802.11s, IEEE 802.15, IEEE 802.16. Dichas redes se conectan a otras, como por ejemplo Internet, a través de dispositivos llamados \gateways" o \puertas de enlace". También se utilizan los términos \pasarela" o \portal" para referirse a estos dispositivos. Algunas de estas redes suelen tener una única puerta de enlace o portal de conexión a Internet. No obstante, dicho portal puede estar congestionado y convertirse en un cuello de botella para toda la red. Para mitigar este problema, es frecuente instalar varios portales para distribuir la carga y mejorar el rendimiento. A este tipo de redes se les conoce como redes inalámbricas mallada multi-portales. Sin embargo, el hecho de agregar más puertas de enlaces no significa necesariamente un aumento proporcional en la capacidad nominal de la red. Se necesita un esquema de selección eficiente cuando se tiene varios portales. En este trabajo se presenta un mecanismo de selección de portal utilizando aprendizaje estadístico. Concretamente la propuesta se basa en aplicar una técnica del aprendizaje estadístico supervisado llamada \Support Vector Machines" (SVM). Este mecanismo es simple, orientado a flujo, independiente de la arquitectura y distribuido, además de no requerir modificaciones en el software existente en los dispositivos de la red. De acuerdo a las simulaciones este mecanismo logra desde el punto de vista de optar por el mejor portal y distribuir el tráfico entre los mismos, buenos resultados, incluso al poder estimar el valor del \throughput" es viable utilizar este mecanismo para el control de admisión.
dc.format.extent.es.fl_str_mv 222 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Espiga Chappe, A. Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico [en línea] Tesis de maestría. Montevideo : Udelar. FI, 2012.
dc.identifier.issn.none.fl_str_mv 1688-2792
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/24189
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar.FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Redes inalámbricas malladas
Aprendizaje estadístico
Support Vector Machine
Redes Mesh
Wireless Mesh Networks
dc.title.none.fl_str_mv Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Las redes inalámbricas malladas (Wireless Mesh Networks - WMN) constituyen un tipo especial de redes inalámbricas multi-saltos que actualmente tienen un elevado interés académico y comercial. Se caracterizan por su autoorganización, auto-configuración y auto-reparación; lo que permite un rápido despliegue, fácil mantenimiento, bajo costo, alta escalabilidad y servicios confiables. Debido a estas ventajas, las organizaciones internacionales de normalización están trabajando activamente en definir especificaciones para este tipo de redes, por ejemplo, IEEE 802.11s, IEEE 802.15, IEEE 802.16. Dichas redes se conectan a otras, como por ejemplo Internet, a través de dispositivos llamados \gateways" o \puertas de enlace". También se utilizan los términos \pasarela" o \portal" para referirse a estos dispositivos. Algunas de estas redes suelen tener una única puerta de enlace o portal de conexión a Internet. No obstante, dicho portal puede estar congestionado y convertirse en un cuello de botella para toda la red. Para mitigar este problema, es frecuente instalar varios portales para distribuir la carga y mejorar el rendimiento. A este tipo de redes se les conoce como redes inalámbricas mallada multi-portales. Sin embargo, el hecho de agregar más puertas de enlaces no significa necesariamente un aumento proporcional en la capacidad nominal de la red. Se necesita un esquema de selección eficiente cuando se tiene varios portales. En este trabajo se presenta un mecanismo de selección de portal utilizando aprendizaje estadístico. Concretamente la propuesta se basa en aplicar una técnica del aprendizaje estadístico supervisado llamada \Support Vector Machines" (SVM). Este mecanismo es simple, orientado a flujo, independiente de la arquitectura y distribuido, además de no requerir modificaciones en el software existente en los dispositivos de la red. De acuerdo a las simulaciones este mecanismo logra desde el punto de vista de optar por el mejor portal y distribuir el tráfico entre los mismos, buenos resultados, incluso al poder estimar el valor del \throughput" es viable utilizar este mecanismo para el control de admisión.
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_2b169e50fc12766e47d21fab4cf23315
identifier_str_mv Espiga Chappe, A. Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico [en línea] Tesis de maestría. Montevideo : Udelar. FI, 2012.
1688-2792
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/24189
publishDate 2012
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Espiga Chappe Alejandro, Universidad de la República (Uruguay). Facultad de Ingeniería.2020-06-03T21:41:34Z2020-06-03T21:41:34Z2012Espiga Chappe, A. Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico [en línea] Tesis de maestría. Montevideo : Udelar. FI, 2012.1688-2792https://hdl.handle.net/20.500.12008/24189Las redes inalámbricas malladas (Wireless Mesh Networks - WMN) constituyen un tipo especial de redes inalámbricas multi-saltos que actualmente tienen un elevado interés académico y comercial. Se caracterizan por su autoorganización, auto-configuración y auto-reparación; lo que permite un rápido despliegue, fácil mantenimiento, bajo costo, alta escalabilidad y servicios confiables. Debido a estas ventajas, las organizaciones internacionales de normalización están trabajando activamente en definir especificaciones para este tipo de redes, por ejemplo, IEEE 802.11s, IEEE 802.15, IEEE 802.16. Dichas redes se conectan a otras, como por ejemplo Internet, a través de dispositivos llamados \gateways" o \puertas de enlace". También se utilizan los términos \pasarela" o \portal" para referirse a estos dispositivos. Algunas de estas redes suelen tener una única puerta de enlace o portal de conexión a Internet. No obstante, dicho portal puede estar congestionado y convertirse en un cuello de botella para toda la red. Para mitigar este problema, es frecuente instalar varios portales para distribuir la carga y mejorar el rendimiento. A este tipo de redes se les conoce como redes inalámbricas mallada multi-portales. Sin embargo, el hecho de agregar más puertas de enlaces no significa necesariamente un aumento proporcional en la capacidad nominal de la red. Se necesita un esquema de selección eficiente cuando se tiene varios portales. En este trabajo se presenta un mecanismo de selección de portal utilizando aprendizaje estadístico. Concretamente la propuesta se basa en aplicar una técnica del aprendizaje estadístico supervisado llamada \Support Vector Machines" (SVM). Este mecanismo es simple, orientado a flujo, independiente de la arquitectura y distribuido, además de no requerir modificaciones en el software existente en los dispositivos de la red. De acuerdo a las simulaciones este mecanismo logra desde el punto de vista de optar por el mejor portal y distribuir el tráfico entre los mismos, buenos resultados, incluso al poder estimar el valor del \throughput" es viable utilizar este mecanismo para el control de admisión.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2020-06-03T16:56:07Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Esp12.PDF: 4144753 bytes, checksum: acf15b38003c43e2a84c30e523fd3204 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2020-06-03T21:13:11Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Esp12.PDF: 4144753 bytes, checksum: acf15b38003c43e2a84c30e523fd3204 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@fic.edu.uy) on 2020-06-03T21:41:34Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Esp12.PDF: 4144753 bytes, checksum: acf15b38003c43e2a84c30e523fd3204 (MD5) Previous issue date: 2012222 p.application/pdfesspaUdelar.FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Redes inalámbricas malladasAprendizaje estadísticoSupport Vector MachineRedes MeshWireless Mesh NetworksSelección de portal en redes inalámbricas malladas utilizando aprendizaje estadísticoTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaEspiga Chappe, AlejandroBelzarena, PabloUniversidad de la República (Uruguay). Facultad de Ingeniería.Magíster en Ingeniería (Ingeniería Matemática)LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/24189/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/24189/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838687http://localhost:8080/xmlui/bitstream/20.500.12008/24189/3/license_textd77747f0b79dbc4c411d2260a3d95cd2MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/24189/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALEsp12.PDFEsp12.PDFapplication/pdf4144753http://localhost:8080/xmlui/bitstream/20.500.12008/24189/1/Esp12.PDFacf15b38003c43e2a84c30e523fd3204MD5120.500.12008/241892020-06-03 18:41:34.559oai:colibri.udelar.edu.uy:20.500.12008/24189VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:05.434118COLIBRI - Universidad de la Repúblicafalse
spellingShingle Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico
Espiga Chappe, Alejandro
Redes inalámbricas malladas
Aprendizaje estadístico
Support Vector Machine
Redes Mesh
Wireless Mesh Networks
status_str acceptedVersion
title Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico
title_full Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico
title_fullStr Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico
title_full_unstemmed Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico
title_short Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico
title_sort Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico
topic Redes inalámbricas malladas
Aprendizaje estadístico
Support Vector Machine
Redes Mesh
Wireless Mesh Networks
url https://hdl.handle.net/20.500.12008/24189