Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico
Supervisor(es): Belzarena, Pablo
Resumen:
Las redes inalámbricas malladas (Wireless Mesh Networks - WMN) constituyen un tipo especial de redes inalámbricas multi-saltos que actualmente tienen un elevado interés académico y comercial. Se caracterizan por su autoorganización, auto-configuración y auto-reparación; lo que permite un rápido despliegue, fácil mantenimiento, bajo costo, alta escalabilidad y servicios confiables. Debido a estas ventajas, las organizaciones internacionales de normalización están trabajando activamente en definir especificaciones para este tipo de redes, por ejemplo, IEEE 802.11s, IEEE 802.15, IEEE 802.16. Dichas redes se conectan a otras, como por ejemplo Internet, a través de dispositivos llamados \gateways" o \puertas de enlace". También se utilizan los términos \pasarela" o \portal" para referirse a estos dispositivos. Algunas de estas redes suelen tener una única puerta de enlace o portal de conexión a Internet. No obstante, dicho portal puede estar congestionado y convertirse en un cuello de botella para toda la red. Para mitigar este problema, es frecuente instalar varios portales para distribuir la carga y mejorar el rendimiento. A este tipo de redes se les conoce como redes inalámbricas mallada multi-portales. Sin embargo, el hecho de agregar más puertas de enlaces no significa necesariamente un aumento proporcional en la capacidad nominal de la red. Se necesita un esquema de selección eficiente cuando se tiene varios portales. En este trabajo se presenta un mecanismo de selección de portal utilizando aprendizaje estadístico. Concretamente la propuesta se basa en aplicar una técnica del aprendizaje estadístico supervisado llamada \Support Vector Machines" (SVM). Este mecanismo es simple, orientado a flujo, independiente de la arquitectura y distribuido, además de no requerir modificaciones en el software existente en los dispositivos de la red. De acuerdo a las simulaciones este mecanismo logra desde el punto de vista de optar por el mejor portal y distribuir el tráfico entre los mismos, buenos resultados, incluso al poder estimar el valor del \throughput" es viable utilizar este mecanismo para el control de admisión.
2012 | |
Redes inalámbricas malladas Aprendizaje estadístico Support Vector Machine Redes Mesh Wireless Mesh Networks |
|
Español | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/24189 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807523175627489280 |
---|---|
author | Espiga Chappe, Alejandro |
author_facet | Espiga Chappe, Alejandro |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 d77747f0b79dbc4c411d2260a3d95cd2 1996b8461bc290aef6a27d78c67b6b52 acf15b38003c43e2a84c30e523fd3204 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/24189/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/24189/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/24189/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/24189/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/24189/1/Esp12.PDF |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Espiga Chappe Alejandro, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.creator.advisor.none.fl_str_mv | Belzarena, Pablo |
dc.creator.none.fl_str_mv | Espiga Chappe, Alejandro |
dc.date.accessioned.none.fl_str_mv | 2020-06-03T21:41:34Z |
dc.date.available.none.fl_str_mv | 2020-06-03T21:41:34Z |
dc.date.issued.none.fl_str_mv | 2012 |
dc.description.abstract.none.fl_txt_mv | Las redes inalámbricas malladas (Wireless Mesh Networks - WMN) constituyen un tipo especial de redes inalámbricas multi-saltos que actualmente tienen un elevado interés académico y comercial. Se caracterizan por su autoorganización, auto-configuración y auto-reparación; lo que permite un rápido despliegue, fácil mantenimiento, bajo costo, alta escalabilidad y servicios confiables. Debido a estas ventajas, las organizaciones internacionales de normalización están trabajando activamente en definir especificaciones para este tipo de redes, por ejemplo, IEEE 802.11s, IEEE 802.15, IEEE 802.16. Dichas redes se conectan a otras, como por ejemplo Internet, a través de dispositivos llamados \gateways" o \puertas de enlace". También se utilizan los términos \pasarela" o \portal" para referirse a estos dispositivos. Algunas de estas redes suelen tener una única puerta de enlace o portal de conexión a Internet. No obstante, dicho portal puede estar congestionado y convertirse en un cuello de botella para toda la red. Para mitigar este problema, es frecuente instalar varios portales para distribuir la carga y mejorar el rendimiento. A este tipo de redes se les conoce como redes inalámbricas mallada multi-portales. Sin embargo, el hecho de agregar más puertas de enlaces no significa necesariamente un aumento proporcional en la capacidad nominal de la red. Se necesita un esquema de selección eficiente cuando se tiene varios portales. En este trabajo se presenta un mecanismo de selección de portal utilizando aprendizaje estadístico. Concretamente la propuesta se basa en aplicar una técnica del aprendizaje estadístico supervisado llamada \Support Vector Machines" (SVM). Este mecanismo es simple, orientado a flujo, independiente de la arquitectura y distribuido, además de no requerir modificaciones en el software existente en los dispositivos de la red. De acuerdo a las simulaciones este mecanismo logra desde el punto de vista de optar por el mejor portal y distribuir el tráfico entre los mismos, buenos resultados, incluso al poder estimar el valor del \throughput" es viable utilizar este mecanismo para el control de admisión. |
dc.format.extent.es.fl_str_mv | 222 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Espiga Chappe, A. Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico [en línea] Tesis de maestría. Montevideo : Udelar. FI, 2012. |
dc.identifier.issn.none.fl_str_mv | 1688-2792 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/24189 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | Udelar.FI. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Redes inalámbricas malladas Aprendizaje estadístico Support Vector Machine Redes Mesh Wireless Mesh Networks |
dc.title.none.fl_str_mv | Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico |
dc.type.es.fl_str_mv | Tesis de maestría |
dc.type.none.fl_str_mv | info:eu-repo/semantics/masterThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | Las redes inalámbricas malladas (Wireless Mesh Networks - WMN) constituyen un tipo especial de redes inalámbricas multi-saltos que actualmente tienen un elevado interés académico y comercial. Se caracterizan por su autoorganización, auto-configuración y auto-reparación; lo que permite un rápido despliegue, fácil mantenimiento, bajo costo, alta escalabilidad y servicios confiables. Debido a estas ventajas, las organizaciones internacionales de normalización están trabajando activamente en definir especificaciones para este tipo de redes, por ejemplo, IEEE 802.11s, IEEE 802.15, IEEE 802.16. Dichas redes se conectan a otras, como por ejemplo Internet, a través de dispositivos llamados \gateways" o \puertas de enlace". También se utilizan los términos \pasarela" o \portal" para referirse a estos dispositivos. Algunas de estas redes suelen tener una única puerta de enlace o portal de conexión a Internet. No obstante, dicho portal puede estar congestionado y convertirse en un cuello de botella para toda la red. Para mitigar este problema, es frecuente instalar varios portales para distribuir la carga y mejorar el rendimiento. A este tipo de redes se les conoce como redes inalámbricas mallada multi-portales. Sin embargo, el hecho de agregar más puertas de enlaces no significa necesariamente un aumento proporcional en la capacidad nominal de la red. Se necesita un esquema de selección eficiente cuando se tiene varios portales. En este trabajo se presenta un mecanismo de selección de portal utilizando aprendizaje estadístico. Concretamente la propuesta se basa en aplicar una técnica del aprendizaje estadístico supervisado llamada \Support Vector Machines" (SVM). Este mecanismo es simple, orientado a flujo, independiente de la arquitectura y distribuido, además de no requerir modificaciones en el software existente en los dispositivos de la red. De acuerdo a las simulaciones este mecanismo logra desde el punto de vista de optar por el mejor portal y distribuir el tráfico entre los mismos, buenos resultados, incluso al poder estimar el valor del \throughput" es viable utilizar este mecanismo para el control de admisión. |
eu_rights_str_mv | openAccess |
format | masterThesis |
id | COLIBRI_2b169e50fc12766e47d21fab4cf23315 |
identifier_str_mv | Espiga Chappe, A. Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico [en línea] Tesis de maestría. Montevideo : Udelar. FI, 2012. 1688-2792 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/24189 |
publishDate | 2012 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Espiga Chappe Alejandro, Universidad de la República (Uruguay). Facultad de Ingeniería.2020-06-03T21:41:34Z2020-06-03T21:41:34Z2012Espiga Chappe, A. Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico [en línea] Tesis de maestría. Montevideo : Udelar. FI, 2012.1688-2792https://hdl.handle.net/20.500.12008/24189Las redes inalámbricas malladas (Wireless Mesh Networks - WMN) constituyen un tipo especial de redes inalámbricas multi-saltos que actualmente tienen un elevado interés académico y comercial. Se caracterizan por su autoorganización, auto-configuración y auto-reparación; lo que permite un rápido despliegue, fácil mantenimiento, bajo costo, alta escalabilidad y servicios confiables. Debido a estas ventajas, las organizaciones internacionales de normalización están trabajando activamente en definir especificaciones para este tipo de redes, por ejemplo, IEEE 802.11s, IEEE 802.15, IEEE 802.16. Dichas redes se conectan a otras, como por ejemplo Internet, a través de dispositivos llamados \gateways" o \puertas de enlace". También se utilizan los términos \pasarela" o \portal" para referirse a estos dispositivos. Algunas de estas redes suelen tener una única puerta de enlace o portal de conexión a Internet. No obstante, dicho portal puede estar congestionado y convertirse en un cuello de botella para toda la red. Para mitigar este problema, es frecuente instalar varios portales para distribuir la carga y mejorar el rendimiento. A este tipo de redes se les conoce como redes inalámbricas mallada multi-portales. Sin embargo, el hecho de agregar más puertas de enlaces no significa necesariamente un aumento proporcional en la capacidad nominal de la red. Se necesita un esquema de selección eficiente cuando se tiene varios portales. En este trabajo se presenta un mecanismo de selección de portal utilizando aprendizaje estadístico. Concretamente la propuesta se basa en aplicar una técnica del aprendizaje estadístico supervisado llamada \Support Vector Machines" (SVM). Este mecanismo es simple, orientado a flujo, independiente de la arquitectura y distribuido, además de no requerir modificaciones en el software existente en los dispositivos de la red. De acuerdo a las simulaciones este mecanismo logra desde el punto de vista de optar por el mejor portal y distribuir el tráfico entre los mismos, buenos resultados, incluso al poder estimar el valor del \throughput" es viable utilizar este mecanismo para el control de admisión.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2020-06-03T16:56:07Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Esp12.PDF: 4144753 bytes, checksum: acf15b38003c43e2a84c30e523fd3204 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2020-06-03T21:13:11Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Esp12.PDF: 4144753 bytes, checksum: acf15b38003c43e2a84c30e523fd3204 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@fic.edu.uy) on 2020-06-03T21:41:34Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Esp12.PDF: 4144753 bytes, checksum: acf15b38003c43e2a84c30e523fd3204 (MD5) Previous issue date: 2012222 p.application/pdfesspaUdelar.FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Redes inalámbricas malladasAprendizaje estadísticoSupport Vector MachineRedes MeshWireless Mesh NetworksSelección de portal en redes inalámbricas malladas utilizando aprendizaje estadísticoTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaEspiga Chappe, AlejandroBelzarena, PabloUniversidad de la República (Uruguay). Facultad de Ingeniería.Magíster en Ingeniería (Ingeniería Matemática)LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/24189/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/24189/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838687http://localhost:8080/xmlui/bitstream/20.500.12008/24189/3/license_textd77747f0b79dbc4c411d2260a3d95cd2MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/24189/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALEsp12.PDFEsp12.PDFapplication/pdf4144753http://localhost:8080/xmlui/bitstream/20.500.12008/24189/1/Esp12.PDFacf15b38003c43e2a84c30e523fd3204MD5120.500.12008/241892020-06-03 18:41:34.559oai:colibri.udelar.edu.uy:20.500.12008/24189VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:05.434118COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico Espiga Chappe, Alejandro Redes inalámbricas malladas Aprendizaje estadístico Support Vector Machine Redes Mesh Wireless Mesh Networks |
status_str | acceptedVersion |
title | Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico |
title_full | Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico |
title_fullStr | Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico |
title_full_unstemmed | Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico |
title_short | Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico |
title_sort | Selección de portal en redes inalámbricas malladas utilizando aprendizaje estadístico |
topic | Redes inalámbricas malladas Aprendizaje estadístico Support Vector Machine Redes Mesh Wireless Mesh Networks |
url | https://hdl.handle.net/20.500.12008/24189 |