Lagrangian mixing of pulsatile flows in constricted tubes
Resumen:
In this work several lagrangian methods were used to analyze the mixing processes in an experimental model of a constricted artery under a pulsatile flow. Upstream Reynolds number Re was changed between 1187 and 1999, while the pulsatile period T was kept fixed at 0.96s. Velocity fields were acquired using Digital Particle Image Velocimetry (DPIV) for a region of interest (ROI) located downstream of the constriction. The flow is composed of a central jet and a recirculation region near the wall where vortex forms and sheds. To study the mixing processes, finite time Lyapunov exponents (FTLE) fields and concentration maps were computed. Two lagrangian coherent structures (LCS) responsible for mixing and transporting fluid were found from FTLE ridges. A first LCS delimits the trailing edge of the vortex, separating the flow that enters the ROI between successive periods. A second LCS delimits the leading edge of the vortex. This LCS concentrates the highest particle agglomeration, as verified by the concentration maps. Moreover, from the particle residence time maps (RT) the probability for a fluid particle of leaving the ROI before one cycle was measured. As Re increases, the probability of leaving the ROI increases from 0.6 to 0.95. Final position maps rf were introduced to evaluate the flow mixing between different subregions of the ROI. These maps allowed us to compute an exchange index between subregions, EI, which shows the main region responsible for the mixing increase with Re. Finally by integrating the results of the different lagrangian methods (FTLE, Concentration maps, RT and rf maps), a comprehensive description of the mixing and transport of the flow was provided.
2022 | |
CSIC: 2016 I+D | |
Lyapunov exponent Dynamical systems Flow visualization Fluid flows Fluid mixing Vortex dynamics Cardiovascular system |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/41676 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
_version_ | 1807522805199142912 |
---|---|
author | Barrere, Nicasio |
author2 | Brum, Javier Anzibar Fialho, Maximiliano Rinderknecht, Felipe Sarasúa, Gustavo L. Cabeza, Cecilia |
author2_role | author author author author author |
author_facet | Barrere, Nicasio Brum, Javier Anzibar Fialho, Maximiliano Rinderknecht, Felipe Sarasúa, Gustavo L. Cabeza, Cecilia |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a0ebbeafb9d2ec7cbb19d7137ebc392c e93280c1a18a5c5703b370d607b943ef 71ed42ef0a0b648670f707320be37b90 39a37f64f8b1b6cfad5bcb77b92f7d10 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/41676/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/41676/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/41676/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/41676/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/41676/1/2207.04329.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Barrere Nicasio, Universidad de la República (Uruguay). Facultad de Ciencias. CURE. Brum Javier, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física. Anzibar Fialho Maximiliano, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física. Rinderknecht Felipe, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física. Sarasúa Gustavo L., Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física. Cabeza Cecilia, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física. |
dc.creator.none.fl_str_mv | Barrere, Nicasio Brum, Javier Anzibar Fialho, Maximiliano Rinderknecht, Felipe Sarasúa, Gustavo L. Cabeza, Cecilia |
dc.date.accessioned.none.fl_str_mv | 2023-12-04T20:09:56Z |
dc.date.available.none.fl_str_mv | 2023-12-04T20:09:56Z |
dc.date.issued.none.fl_str_mv | 2022 |
dc.description.abstract.none.fl_txt_mv | In this work several lagrangian methods were used to analyze the mixing processes in an experimental model of a constricted artery under a pulsatile flow. Upstream Reynolds number Re was changed between 1187 and 1999, while the pulsatile period T was kept fixed at 0.96s. Velocity fields were acquired using Digital Particle Image Velocimetry (DPIV) for a region of interest (ROI) located downstream of the constriction. The flow is composed of a central jet and a recirculation region near the wall where vortex forms and sheds. To study the mixing processes, finite time Lyapunov exponents (FTLE) fields and concentration maps were computed. Two lagrangian coherent structures (LCS) responsible for mixing and transporting fluid were found from FTLE ridges. A first LCS delimits the trailing edge of the vortex, separating the flow that enters the ROI between successive periods. A second LCS delimits the leading edge of the vortex. This LCS concentrates the highest particle agglomeration, as verified by the concentration maps. Moreover, from the particle residence time maps (RT) the probability for a fluid particle of leaving the ROI before one cycle was measured. As Re increases, the probability of leaving the ROI increases from 0.6 to 0.95. Final position maps rf were introduced to evaluate the flow mixing between different subregions of the ROI. These maps allowed us to compute an exchange index between subregions, EI, which shows the main region responsible for the mixing increase with Re. Finally by integrating the results of the different lagrangian methods (FTLE, Concentration maps, RT and rf maps), a comprehensive description of the mixing and transport of the flow was provided. |
dc.description.es.fl_txt_mv | Publicado también como: International Physics of Fluids, 2023, 35(2): 021901. DOI: https://doi.org/10.1063/5.0128839 |
dc.description.sponsorship.none.fl_txt_mv | CSIC: 2016 I+D |
dc.format.extent.es.fl_str_mv | 12 h. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Barrere, N, Brum, J, Anzibar Fialho, M, y otros. "Lagrangian mixing of pulsatile flows in constricted tubes" [Preprint] Physics (Fluid Dynamics). 2022, arXiv:2207.04329, Sep 2022, pp 1-12. DOI: 10.48550/arXiv.2207.04329 |
dc.identifier.doi.none.fl_str_mv | 10.48550/arXiv.2207.04329 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/41676 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | arXiv |
dc.relation.ispartof.es.fl_str_mv | Physics (Fluid Dynamics), arXiv:2207.04329, sep 2022, pp 1-12 |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Lyapunov exponent Dynamical systems Flow visualization Fluid flows Fluid mixing Vortex dynamics Cardiovascular system |
dc.title.none.fl_str_mv | Lagrangian mixing of pulsatile flows in constricted tubes |
dc.type.es.fl_str_mv | Preprint |
dc.type.none.fl_str_mv | info:eu-repo/semantics/preprint |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/submittedVersion |
description | Publicado también como: International Physics of Fluids, 2023, 35(2): 021901. DOI: https://doi.org/10.1063/5.0128839 |
eu_rights_str_mv | openAccess |
format | preprint |
id | COLIBRI_2756d01329ecbb58159dfc675368c2da |
identifier_str_mv | Barrere, N, Brum, J, Anzibar Fialho, M, y otros. "Lagrangian mixing of pulsatile flows in constricted tubes" [Preprint] Physics (Fluid Dynamics). 2022, arXiv:2207.04329, Sep 2022, pp 1-12. DOI: 10.48550/arXiv.2207.04329 10.48550/arXiv.2207.04329 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/41676 |
publishDate | 2022 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
spelling | Barrere Nicasio, Universidad de la República (Uruguay). Facultad de Ciencias. CURE.Brum Javier, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.Anzibar Fialho Maximiliano, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.Rinderknecht Felipe, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.Sarasúa Gustavo L., Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.Cabeza Cecilia, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.2023-12-04T20:09:56Z2023-12-04T20:09:56Z2022Barrere, N, Brum, J, Anzibar Fialho, M, y otros. "Lagrangian mixing of pulsatile flows in constricted tubes" [Preprint] Physics (Fluid Dynamics). 2022, arXiv:2207.04329, Sep 2022, pp 1-12. DOI: 10.48550/arXiv.2207.04329https://hdl.handle.net/20.500.12008/4167610.48550/arXiv.2207.04329Publicado también como: International Physics of Fluids, 2023, 35(2): 021901. DOI: https://doi.org/10.1063/5.0128839In this work several lagrangian methods were used to analyze the mixing processes in an experimental model of a constricted artery under a pulsatile flow. Upstream Reynolds number Re was changed between 1187 and 1999, while the pulsatile period T was kept fixed at 0.96s. Velocity fields were acquired using Digital Particle Image Velocimetry (DPIV) for a region of interest (ROI) located downstream of the constriction. The flow is composed of a central jet and a recirculation region near the wall where vortex forms and sheds. To study the mixing processes, finite time Lyapunov exponents (FTLE) fields and concentration maps were computed. Two lagrangian coherent structures (LCS) responsible for mixing and transporting fluid were found from FTLE ridges. A first LCS delimits the trailing edge of the vortex, separating the flow that enters the ROI between successive periods. A second LCS delimits the leading edge of the vortex. This LCS concentrates the highest particle agglomeration, as verified by the concentration maps. Moreover, from the particle residence time maps (RT) the probability for a fluid particle of leaving the ROI before one cycle was measured. As Re increases, the probability of leaving the ROI increases from 0.6 to 0.95. Final position maps rf were introduced to evaluate the flow mixing between different subregions of the ROI. These maps allowed us to compute an exchange index between subregions, EI, which shows the main region responsible for the mixing increase with Re. Finally by integrating the results of the different lagrangian methods (FTLE, Concentration maps, RT and rf maps), a comprehensive description of the mixing and transport of the flow was provided.Submitted by Festari Camila (camifestari@gmail.com) on 2023-12-02T02:52:14Z No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 2207.04329.pdf: 2186383 bytes, checksum: 39a37f64f8b1b6cfad5bcb77b92f7d10 (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2023-12-04T18:41:23Z (GMT) No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 2207.04329.pdf: 2186383 bytes, checksum: 39a37f64f8b1b6cfad5bcb77b92f7d10 (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2023-12-04T20:09:56Z (GMT). No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 2207.04329.pdf: 2186383 bytes, checksum: 39a37f64f8b1b6cfad5bcb77b92f7d10 (MD5) Previous issue date: 2022CSIC: 2016 I+D12 h.application/pdfenengarXivPhysics (Fluid Dynamics), arXiv:2207.04329, sep 2022, pp 1-12Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)Lyapunov exponentDynamical systemsFlow visualizationFluid flowsFluid mixingVortex dynamicsCardiovascular systemLagrangian mixing of pulsatile flows in constricted tubesPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaBarrere, NicasioBrum, JavierAnzibar Fialho, MaximilianoRinderknecht, FelipeSarasúa, Gustavo L.Cabeza, CeciliaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/41676/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/41676/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-820473http://localhost:8080/xmlui/bitstream/20.500.12008/41676/3/license_texte93280c1a18a5c5703b370d607b943efMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-824251http://localhost:8080/xmlui/bitstream/20.500.12008/41676/4/license_rdf71ed42ef0a0b648670f707320be37b90MD54ORIGINAL2207.04329.pdf2207.04329.pdfapplication/pdf2186383http://localhost:8080/xmlui/bitstream/20.500.12008/41676/1/2207.04329.pdf39a37f64f8b1b6cfad5bcb77b92f7d10MD5120.500.12008/416762023-12-04 17:09:56.526oai:colibri.udelar.edu.uy:20.500.12008/41676VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:16.995066COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Lagrangian mixing of pulsatile flows in constricted tubes Barrere, Nicasio Lyapunov exponent Dynamical systems Flow visualization Fluid flows Fluid mixing Vortex dynamics Cardiovascular system |
status_str | submittedVersion |
title | Lagrangian mixing of pulsatile flows in constricted tubes |
title_full | Lagrangian mixing of pulsatile flows in constricted tubes |
title_fullStr | Lagrangian mixing of pulsatile flows in constricted tubes |
title_full_unstemmed | Lagrangian mixing of pulsatile flows in constricted tubes |
title_short | Lagrangian mixing of pulsatile flows in constricted tubes |
title_sort | Lagrangian mixing of pulsatile flows in constricted tubes |
topic | Lyapunov exponent Dynamical systems Flow visualization Fluid flows Fluid mixing Vortex dynamics Cardiovascular system |
url | https://hdl.handle.net/20.500.12008/41676 |