Learning to solve decision problems over two timescales : An application to 5G puncturing

Randall, Martín - Belcredi, Gonzalo - Belzarena, Pablo - Larroca, Federico

Resumen:

One of the biggest innovations on 5G and beyond is the support of three different services with particular delay and bandwidth requirements, such as Massive Machine Type Communications (MMTC), enhanced Mobile Broad Band (eMBB) and Ultra-Reliable Low Latency Communications (URLLC). In order to achieve these multiple service requirements, all users have to share resources over the 5G Orthogonal Frequency-Division Multiple Access (OFDMA) frame. One of the strategies proposed by the 5G standard is puncturing, which allows the scheduler to assign eMBB services on a timescale, and on a shorter timescale to preemptively overwrite part of the eMBB assignment when a URLLC user arrives. The optimization of puncturing poses a challenging problem: the optimal allocation depends on traffic arriving over different timescales, which forces the scheduler to make allocation decisions without knowledge of future users’ demands, all while having to satisfy several strong constraints. This kind of multiple timescales optimization with restrictions is also to be found in many interesting problems, such as energy management. We propose a learning mechanism where the system learns offline the optimal allocation according to the network state. This learned estimation is then used online to determine the optimal allocation. Through simulations, we verify that the proposed learning strategy provides results close to the optimal policy, improving state of the art proposals for puncturing schemes.


Detalles Bibliográficos
2023
Este trabajo se encuentra parcialmente financiado por la Agencia Nacional de Investigacion e Innovación (ANII) a través del proyecto "Inteligencia Artificial para redes 5G" (FMV 1 2019 1 155700)
Beca doctorado ANII
5G and beyond
Resource allocation
Puncturing
Machine learning
eMBB
URLLC
Inglés
Universidad de la República
COLIBRI
https://link.springer.com/article/10.1007/s11277-023-10735-3
https://hdl.handle.net/20.500.12008/40876
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522936551112704
author Randall, Martín
author2 Belcredi, Gonzalo
Belzarena, Pablo
Larroca, Federico
author2_role author
author
author
author_facet Randall, Martín
Belcredi, Gonzalo
Belzarena, Pablo
Larroca, Federico
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
1274339f512f00ecc522a4c5febd859e
489f03e71d39068f329bdec8798bce58
07767b566d0175603bfab3a11e4d9e93
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/40876/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/40876/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/40876/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/40876/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/40876/1/RBBL23.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Randall Martín, Universidad de la República (Uruguay). Facultad de Ingeniería.
Belcredi Gonzalo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Belzarena Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Larroca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.none.fl_str_mv Randall, Martín
Belcredi, Gonzalo
Belzarena, Pablo
Larroca, Federico
dc.date.accessioned.none.fl_str_mv 2023-10-31T21:23:33Z
dc.date.available.none.fl_str_mv 2023-10-31T21:23:33Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv One of the biggest innovations on 5G and beyond is the support of three different services with particular delay and bandwidth requirements, such as Massive Machine Type Communications (MMTC), enhanced Mobile Broad Band (eMBB) and Ultra-Reliable Low Latency Communications (URLLC). In order to achieve these multiple service requirements, all users have to share resources over the 5G Orthogonal Frequency-Division Multiple Access (OFDMA) frame. One of the strategies proposed by the 5G standard is puncturing, which allows the scheduler to assign eMBB services on a timescale, and on a shorter timescale to preemptively overwrite part of the eMBB assignment when a URLLC user arrives. The optimization of puncturing poses a challenging problem: the optimal allocation depends on traffic arriving over different timescales, which forces the scheduler to make allocation decisions without knowledge of future users’ demands, all while having to satisfy several strong constraints. This kind of multiple timescales optimization with restrictions is also to be found in many interesting problems, such as energy management. We propose a learning mechanism where the system learns offline the optimal allocation according to the network state. This learned estimation is then used online to determine the optimal allocation. Through simulations, we verify that the proposed learning strategy provides results close to the optimal policy, improving state of the art proposals for puncturing schemes.
dc.description.sponsorship.none.fl_txt_mv Este trabajo se encuentra parcialmente financiado por la Agencia Nacional de Investigacion e Innovación (ANII) a través del proyecto "Inteligencia Artificial para redes 5G" (FMV 1 2019 1 155700)
Beca doctorado ANII
dc.format.extent.es.fl_str_mv 21 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Randall, M., Belcredi, G., Belzarena, P. y otros. "Learning to solve decision problems over two timescales : An application to 5G puncturing". Wireless Personal Communications. [en línea]. 2023 vol. 132, no. 4, pp. 2603-2623. DOI: 10.1007/s11277-023-10735-3.
dc.identifier.doi.none.fl_str_mv 10.1007/s11277-023-10735-3
dc.identifier.eissn.none.fl_str_mv 1572-834X
dc.identifier.issn.none.fl_str_mv 0929-6212
dc.identifier.uri.none.fl_str_mv https://link.springer.com/article/10.1007/s11277-023-10735-3
https://hdl.handle.net/20.500.12008/40876
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Springer
dc.relation.ispartof.es.fl_str_mv Wireless Personal Communications, vol. 132, no. 4, oct. 2023, pp. 2603-2623.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv 5G and beyond
Resource allocation
Puncturing
Machine learning
eMBB
URLLC
dc.title.none.fl_str_mv Learning to solve decision problems over two timescales : An application to 5G puncturing
dc.type.es.fl_str_mv Artículo
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description One of the biggest innovations on 5G and beyond is the support of three different services with particular delay and bandwidth requirements, such as Massive Machine Type Communications (MMTC), enhanced Mobile Broad Band (eMBB) and Ultra-Reliable Low Latency Communications (URLLC). In order to achieve these multiple service requirements, all users have to share resources over the 5G Orthogonal Frequency-Division Multiple Access (OFDMA) frame. One of the strategies proposed by the 5G standard is puncturing, which allows the scheduler to assign eMBB services on a timescale, and on a shorter timescale to preemptively overwrite part of the eMBB assignment when a URLLC user arrives. The optimization of puncturing poses a challenging problem: the optimal allocation depends on traffic arriving over different timescales, which forces the scheduler to make allocation decisions without knowledge of future users’ demands, all while having to satisfy several strong constraints. This kind of multiple timescales optimization with restrictions is also to be found in many interesting problems, such as energy management. We propose a learning mechanism where the system learns offline the optimal allocation according to the network state. This learned estimation is then used online to determine the optimal allocation. Through simulations, we verify that the proposed learning strategy provides results close to the optimal policy, improving state of the art proposals for puncturing schemes.
eu_rights_str_mv openAccess
format article
id COLIBRI_253008f3891a8e8577adb7b7f54a615a
identifier_str_mv Randall, M., Belcredi, G., Belzarena, P. y otros. "Learning to solve decision problems over two timescales : An application to 5G puncturing". Wireless Personal Communications. [en línea]. 2023 vol. 132, no. 4, pp. 2603-2623. DOI: 10.1007/s11277-023-10735-3.
0929-6212
10.1007/s11277-023-10735-3
1572-834X
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/40876
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Randall Martín, Universidad de la República (Uruguay). Facultad de Ingeniería.Belcredi Gonzalo, Universidad de la República (Uruguay). Facultad de Ingeniería.Belzarena Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.Larroca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.2023-10-31T21:23:33Z2023-10-31T21:23:33Z2023Randall, M., Belcredi, G., Belzarena, P. y otros. "Learning to solve decision problems over two timescales : An application to 5G puncturing". Wireless Personal Communications. [en línea]. 2023 vol. 132, no. 4, pp. 2603-2623. DOI: 10.1007/s11277-023-10735-3.0929-6212https://link.springer.com/article/10.1007/s11277-023-10735-3https://hdl.handle.net/20.500.12008/4087610.1007/s11277-023-10735-31572-834XOne of the biggest innovations on 5G and beyond is the support of three different services with particular delay and bandwidth requirements, such as Massive Machine Type Communications (MMTC), enhanced Mobile Broad Band (eMBB) and Ultra-Reliable Low Latency Communications (URLLC). In order to achieve these multiple service requirements, all users have to share resources over the 5G Orthogonal Frequency-Division Multiple Access (OFDMA) frame. One of the strategies proposed by the 5G standard is puncturing, which allows the scheduler to assign eMBB services on a timescale, and on a shorter timescale to preemptively overwrite part of the eMBB assignment when a URLLC user arrives. The optimization of puncturing poses a challenging problem: the optimal allocation depends on traffic arriving over different timescales, which forces the scheduler to make allocation decisions without knowledge of future users’ demands, all while having to satisfy several strong constraints. This kind of multiple timescales optimization with restrictions is also to be found in many interesting problems, such as energy management. We propose a learning mechanism where the system learns offline the optimal allocation according to the network state. This learned estimation is then used online to determine the optimal allocation. Through simulations, we verify that the proposed learning strategy provides results close to the optimal policy, improving state of the art proposals for puncturing schemes.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-10-30T19:21:33Z No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) RBBL23.pdf: 591235 bytes, checksum: 07767b566d0175603bfab3a11e4d9e93 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-10-31T18:55:28Z (GMT) No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) RBBL23.pdf: 591235 bytes, checksum: 07767b566d0175603bfab3a11e4d9e93 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-10-31T21:23:33Z (GMT). No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) RBBL23.pdf: 591235 bytes, checksum: 07767b566d0175603bfab3a11e4d9e93 (MD5) Previous issue date: 2023Este trabajo se encuentra parcialmente financiado por la Agencia Nacional de Investigacion e Innovación (ANII) a través del proyecto "Inteligencia Artificial para redes 5G" (FMV 1 2019 1 155700)Beca doctorado ANII21 p.application/pdfenengSpringerWireless Personal Communications, vol. 132, no. 4, oct. 2023, pp. 2603-2623.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)5G and beyondResource allocationPuncturingMachine learningeMBBURLLCLearning to solve decision problems over two timescales : An application to 5G puncturingArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaRandall, MartínBelcredi, GonzaloBelzarena, PabloLarroca, FedericoTelecomunicacionesAnálisis de Redes, Tráfico y Estadísticas de ServiciosLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/40876/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/40876/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-814403http://localhost:8080/xmlui/bitstream/20.500.12008/40876/3/license_text1274339f512f00ecc522a4c5febd859eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-825790http://localhost:8080/xmlui/bitstream/20.500.12008/40876/4/license_rdf489f03e71d39068f329bdec8798bce58MD54ORIGINALRBBL23.pdfRBBL23.pdfapplication/pdf591235http://localhost:8080/xmlui/bitstream/20.500.12008/40876/1/RBBL23.pdf07767b566d0175603bfab3a11e4d9e93MD5120.500.12008/408762024-07-24 17:25:47.613oai:colibri.udelar.edu.uy:20.500.12008/40876VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:33.957544COLIBRI - Universidad de la Repúblicafalse
spellingShingle Learning to solve decision problems over two timescales : An application to 5G puncturing
Randall, Martín
5G and beyond
Resource allocation
Puncturing
Machine learning
eMBB
URLLC
status_str publishedVersion
title Learning to solve decision problems over two timescales : An application to 5G puncturing
title_full Learning to solve decision problems over two timescales : An application to 5G puncturing
title_fullStr Learning to solve decision problems over two timescales : An application to 5G puncturing
title_full_unstemmed Learning to solve decision problems over two timescales : An application to 5G puncturing
title_short Learning to solve decision problems over two timescales : An application to 5G puncturing
title_sort Learning to solve decision problems over two timescales : An application to 5G puncturing
topic 5G and beyond
Resource allocation
Puncturing
Machine learning
eMBB
URLLC
url https://link.springer.com/article/10.1007/s11277-023-10735-3
https://hdl.handle.net/20.500.12008/40876