Desarrollo de electrocatalizadores basados en metales no nobles para la producción de hidrógeno verde mediante la electrólisis del agua

Prieto Pastorino, Natalia

Supervisor(es): Cuña Suárez, Andrés - Castiglioni, Jorge - Almeida Leal da Silva, Elen

Resumen:

En los últimos años, el hidrógeno (H2) ha despertado mucho interés nacional e internacional como vector energético para el desarrollo sustentable y la descarbonización de la economía. Una de las formas más limpias y sustentables de producir hidrógeno es a través de la electrólisis del agua, en especial mediante el uso de energía eléctrica de origen renovable (eólica, fotovoltaica, etc.), constituyendo lo que en la actualidad se denomina como hidrógeno verde. La producción electroquímica de H2 se lleva a cabo en un dispositivo denominado electrolizador, básicamente constituido por dos electrodos (ánodo y cátodo) y un electrolito. El H2 se produce en el cátodo mediante una reacción denominada como reacción de evolución de hidrógeno (REH), mientras que el ánodo ocurre la reacción de evolución de oxígeno (REO). Para que estas reacciones ocurran en forma eficiente, los electrolizadores comerciales deben utilizar materiales catódicos y anódicos a base de metales nobles (Pt, Pd, Ir, Ru, entre otros), lo que eleva sus costos y dificulta su implementación a gran escala. Esto último ha impulsado una intensa investigación académica e industrial, orientada a la búsqueda de nuevos tipos de electrocatalizadores catódicos a base de metales no nobles. En esta tesis se sintetizaron y caracterizaron materiales a base de metales no nobles para su uso como electrocatalizadores catódicos y anódicos, para su empleo en electrolizadores de baja temperatura. Como materiales catódicos se estudió la preparción, de fosfuros de hierro y fosfuros de niquel, soportados sobre carbones activados obtenidos a partir de madera de Eucalyptus grandis mediante activación química con H3PO4. En el caso de los materiales anódicos, se investigó el uso de materiales del tipo óxidos de cobalto, preparados mediante el método de autocombustión.Los materiales fueron caracterizadores desde el punto de vista fisocoquímico, incluyendo análisis estructural y morfológico (DRX, SEM-EDS), análisis químico (análisis elemental), textural (análisis textural) y térmico (TGA-DTA). La evaluación electrocatalítica de los materiales, como catalizadores en la REH y la REO, se evaluó mediante experimentos electroquímicos en celda de tres electrodos, en medio ácido o alcalino, según el caso. Para los materiales catódicos también se evaluó la producción de hidrógeno usando un gasovolúmetro adapatado para tal fin. Con estos resultados se pudo determinar la eficiencia faradaica (EF) de la reacción catódica a diferentes densidades de corrientes. Los resultados de las caracterizaciones fisicoquímicas muestran que fue posible obtener partículas de fosfuros de hierro y fosfuros de níquel de tamaño micrométrico bien distribuidas sonbre un soporte carbonoso con elevadas áreas superficiales. Los mejores resultados electroquímicos para la REH en medio ácido, se obtuvieron para los materiales con un 20% nominal de hierro (muestra Fe(20)/CHP700), cuyos valores de potencial de inicio (Einicio), sobrepotencial para alcanzar una densidad de corriente de -50 mA cm-2 (η-50) y pendiente de Tafel son: -179 mV vs. ERH, -229 mV vs. ERH y 108 mV dec-1, respectivamente. Para este material, la resistencia asociada a la REH determinada mediante espectroscopía de impedancia electroquímica fue de 1,7 Ω cm2, mientras que la retención de la actividad electrocatalítica fue 60% en 12 horas. Dentro de los materiales basados en níquel, el mejor material para la REH en medio alcalino correspondió a la muestra con 30% nominal de níquel (muestra Ni(30)/CHP700), con valores de Einicio, η-50 y pendiente de Tafel de -266 mV vs. ERH, -357 mV vs. ERH y 197 mV dec-1 respectivamente, obteniéndose una resistencia asociada a la REH de 2,5 Ω cm2 y una aceptable retención de actividad electrocatalítica.La mayor EF obtenida para los materiales basados en hierro fue para el electrocatalizador Fe(20)/CHP700, con un valor de 81,4%. Entre los materiales basados en níquel, el electrocatalizador Ni(30)/CHP700 fue el que presentó mayor EF (75,0%). En cuanto a los materiales de cobalto preparados, se logró sintetizar de forma rápida y simple materiales a base de cobalto. Los materiales son más estables y presentan mayor actividad electrocatalítica para la REO en medio básico, en comparación con el medio ácido, con Einicio igual a +1,669 y +1,559 mV vs. ERH en medio ácido y alcalino, respectivamente. Trabajos futuros se centrarán en la evaluación de los materiales mediante tests en celda completa, con el fin de determinar la curva de polarización de los mismos en condiciones similares a la de operabilidad de los electrolizadores comerciales.


Detalles Bibliográficos
2024
Reacción de Evolución de Hidrógeno
Reacción de Evolución de Oxígeno
Electrocatalizadores a base de metales no nobles
HIDRÓGENO VERDE
ELECTROLISIS DEL AGUA
ELECTROCATALIZADOR
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/45163
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1810421877848408064
author Prieto Pastorino, Natalia
author_facet Prieto Pastorino, Natalia
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
df0749cf944f9d2754bc76e8ce56250c
489f03e71d39068f329bdec8798bce58
412e1e21611866b45b5e083733dab7f8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/45163/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/45163/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/45163/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/45163/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/45163/1/TD_Prieto.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Prieto Pastorino Natalia
dc.creator.advisor.none.fl_str_mv Cuña Suárez, Andrés
Castiglioni, Jorge
Almeida Leal da Silva, Elen
dc.creator.none.fl_str_mv Prieto Pastorino, Natalia
dc.date.accessioned.none.fl_str_mv 2024-08-06T15:00:08Z
dc.date.available.none.fl_str_mv 2024-08-06T15:00:08Z
dc.date.issued.none.fl_str_mv 2024
dc.description.abstract.none.fl_txt_mv En los últimos años, el hidrógeno (H2) ha despertado mucho interés nacional e internacional como vector energético para el desarrollo sustentable y la descarbonización de la economía. Una de las formas más limpias y sustentables de producir hidrógeno es a través de la electrólisis del agua, en especial mediante el uso de energía eléctrica de origen renovable (eólica, fotovoltaica, etc.), constituyendo lo que en la actualidad se denomina como hidrógeno verde. La producción electroquímica de H2 se lleva a cabo en un dispositivo denominado electrolizador, básicamente constituido por dos electrodos (ánodo y cátodo) y un electrolito. El H2 se produce en el cátodo mediante una reacción denominada como reacción de evolución de hidrógeno (REH), mientras que el ánodo ocurre la reacción de evolución de oxígeno (REO). Para que estas reacciones ocurran en forma eficiente, los electrolizadores comerciales deben utilizar materiales catódicos y anódicos a base de metales nobles (Pt, Pd, Ir, Ru, entre otros), lo que eleva sus costos y dificulta su implementación a gran escala. Esto último ha impulsado una intensa investigación académica e industrial, orientada a la búsqueda de nuevos tipos de electrocatalizadores catódicos a base de metales no nobles. En esta tesis se sintetizaron y caracterizaron materiales a base de metales no nobles para su uso como electrocatalizadores catódicos y anódicos, para su empleo en electrolizadores de baja temperatura. Como materiales catódicos se estudió la preparción, de fosfuros de hierro y fosfuros de niquel, soportados sobre carbones activados obtenidos a partir de madera de Eucalyptus grandis mediante activación química con H3PO4. En el caso de los materiales anódicos, se investigó el uso de materiales del tipo óxidos de cobalto, preparados mediante el método de autocombustión.Los materiales fueron caracterizadores desde el punto de vista fisocoquímico, incluyendo análisis estructural y morfológico (DRX, SEM-EDS), análisis químico (análisis elemental), textural (análisis textural) y térmico (TGA-DTA). La evaluación electrocatalítica de los materiales, como catalizadores en la REH y la REO, se evaluó mediante experimentos electroquímicos en celda de tres electrodos, en medio ácido o alcalino, según el caso. Para los materiales catódicos también se evaluó la producción de hidrógeno usando un gasovolúmetro adapatado para tal fin. Con estos resultados se pudo determinar la eficiencia faradaica (EF) de la reacción catódica a diferentes densidades de corrientes. Los resultados de las caracterizaciones fisicoquímicas muestran que fue posible obtener partículas de fosfuros de hierro y fosfuros de níquel de tamaño micrométrico bien distribuidas sonbre un soporte carbonoso con elevadas áreas superficiales. Los mejores resultados electroquímicos para la REH en medio ácido, se obtuvieron para los materiales con un 20% nominal de hierro (muestra Fe(20)/CHP700), cuyos valores de potencial de inicio (Einicio), sobrepotencial para alcanzar una densidad de corriente de -50 mA cm-2 (η-50) y pendiente de Tafel son: -179 mV vs. ERH, -229 mV vs. ERH y 108 mV dec-1, respectivamente. Para este material, la resistencia asociada a la REH determinada mediante espectroscopía de impedancia electroquímica fue de 1,7 Ω cm2, mientras que la retención de la actividad electrocatalítica fue 60% en 12 horas. Dentro de los materiales basados en níquel, el mejor material para la REH en medio alcalino correspondió a la muestra con 30% nominal de níquel (muestra Ni(30)/CHP700), con valores de Einicio, η-50 y pendiente de Tafel de -266 mV vs. ERH, -357 mV vs. ERH y 197 mV dec-1 respectivamente, obteniéndose una resistencia asociada a la REH de 2,5 Ω cm2 y una aceptable retención de actividad electrocatalítica.La mayor EF obtenida para los materiales basados en hierro fue para el electrocatalizador Fe(20)/CHP700, con un valor de 81,4%. Entre los materiales basados en níquel, el electrocatalizador Ni(30)/CHP700 fue el que presentó mayor EF (75,0%). En cuanto a los materiales de cobalto preparados, se logró sintetizar de forma rápida y simple materiales a base de cobalto. Los materiales son más estables y presentan mayor actividad electrocatalítica para la REO en medio básico, en comparación con el medio ácido, con Einicio igual a +1,669 y +1,559 mV vs. ERH en medio ácido y alcalino, respectivamente. Trabajos futuros se centrarán en la evaluación de los materiales mediante tests en celda completa, con el fin de determinar la curva de polarización de los mismos en condiciones similares a la de operabilidad de los electrolizadores comerciales.
dc.description.tableofcontents.es.fl_txt_mv 1 Introducción -- Marco teórico -- Objetivos de la tesis -- Objetivos generales -- Objetivos específicos -- Referencias bibliográficas -- 2 Fundamentos teóricos -- Hidrógeno verde y su importancia: características, formas de producción y usos -- Electrólisis del agua: tipos (ácida y básica), electrolizadores, componentes -- Descripción de los electrolizadores alcalinos -- Descripción de los electrolizadores tipo PEM -- La reacción de evolución de hidrógeno (REH) y sus mecanismos según el medio -- Mecanismo de reacción en medio ácido -- Mecanismo de reacción en medio básico -- Electrocatalizadores catódicos para la REH -- Criterios de selección según comportamiento electroquímico -- Tipos de electrocatalizadores catódicos para la REH -- Electrocatalizadores a base de hierro y níquel para la REH -- Métodos de síntesis de fosfuros de hierro y fosfuros de níquel -- Electrocatalizadores anódicos para la REO -- Óxidos de cobalto como electrocatalizadores para la REO -- Soportes catalíticos a base de materiales carbonosos -- Contribuciones a las características electroquímicas del electrocatalizador -- Activación física y química -- Métodos de caracterización electroquímica de electrocatalizadores -- Voltametría lineal -- Voltametría cíclica -- Espectroscopía de Impedancia Electroquímica (EIE) – Cronoamperometría -- Cuantificación de productos de reacción durante la reacción evaluada -- Referencias bibliográficas -- 3 Metodología -- Síntesis de soportes carbonosos -- Síntesis de electrocatalizadores a base de hierro para la REH -- Síntesis de electrocatalizadores a base de níquel para la REH -- Síntesis de electrocatalizadores a base de cobalto para la REO -- Caracterizaciones fisicoquímicas de los electrocatalizadores -- Difracción de Rayos X (DRX) -- Análisis Elemental -- Análisis Textural -- Microscopía Electrónica de Barrido (SEM) -- Análisis termogravimétrico (TGA) y diferencial térmico (DTA) -- Caracterizaciones electroquímicas -- Preparación del electrodo de trabajo (ET) -- Descripción y armado de la celda electroquímica de tres electrodos para medidas en medio ácido y básico -- Voltametría lineal y determinación del potencial de inicio de la REH -- Espectroscopía de Impedancia Electroquímica (EIE) – Cronoamperometría -- Cuantificación del hidrógeno producido y cálculo de eficiencias -- Caracterizaciones electroquímicas de los materiales anódicos -- Voltametrías lineales -- Voltametrías cíclicas -- Espectroscopía de Impedancia Electroquímica (EIE) – Cronoamperometría -- Referencias bibliográficas -- 4 Discusión de los resultados de las caracterizaciones fisicoquímicas de los soportes y de los electrocatalizadores catódicos -- Carbones activados -- Materiales a base de hierro -- Materiales a base de níquel -- Conclusiones parciales -- Referencias bibliográficas -- 5 Discusión de los resultados de las caracterizaciones electroquímicas de los electrocatalizadores para la REH -- Electrocatalizadores a base de hierro -- Electrocatalizadores a base de níquel -- Conclusiones parciales -- Referencias bibliográficas -- 6 Discusión de los resultados de las medidas de producción de hidrógeno y determinación de las eficiencias faradáicas -- Electrocatalizadores a base de hierro -- Electrocatalizadores a base de níquel -- Conclusiones parciales -- Referencias bibliográficas -- 7 Discusión de los resultados de las caracterizaciones fisicoquímicas y electroquímicas de los electrocatalizadores para la REO -- Caracterizaciones fisicoquímicas -- Caracterizaciones electroquímicas en medio ácido -- Caracterizaciones electroquímicas en medio básico -- Conclusiones parciales -- Referencias bibliográficas -- 8 Conclusiones y trabajos a futuro -- Conclusiones generales -- Trabajos a futuro.
dc.format.extent.es.fl_str_mv xxi + 155 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Prieto Pastorino, N. Desarrollo de electrocatalizadores basados en metales no nobles para la producción de hidrógeno verde mediante la electrólisis del agua [en línea] Tesis de doctorado. Montevideo : Udelar. FQ, 2024
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/45163
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar. FQ
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Reacción de Evolución de Hidrógeno
Reacción de Evolución de Oxígeno
Electrocatalizadores a base de metales no nobles
dc.subject.other.es.fl_str_mv HIDRÓGENO VERDE
ELECTROLISIS DEL AGUA
ELECTROCATALIZADOR
dc.title.none.fl_str_mv Desarrollo de electrocatalizadores basados en metales no nobles para la producción de hidrógeno verde mediante la electrólisis del agua
dc.type.es.fl_str_mv Tesis de doctorado
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description En los últimos años, el hidrógeno (H2) ha despertado mucho interés nacional e internacional como vector energético para el desarrollo sustentable y la descarbonización de la economía. Una de las formas más limpias y sustentables de producir hidrógeno es a través de la electrólisis del agua, en especial mediante el uso de energía eléctrica de origen renovable (eólica, fotovoltaica, etc.), constituyendo lo que en la actualidad se denomina como hidrógeno verde. La producción electroquímica de H2 se lleva a cabo en un dispositivo denominado electrolizador, básicamente constituido por dos electrodos (ánodo y cátodo) y un electrolito. El H2 se produce en el cátodo mediante una reacción denominada como reacción de evolución de hidrógeno (REH), mientras que el ánodo ocurre la reacción de evolución de oxígeno (REO). Para que estas reacciones ocurran en forma eficiente, los electrolizadores comerciales deben utilizar materiales catódicos y anódicos a base de metales nobles (Pt, Pd, Ir, Ru, entre otros), lo que eleva sus costos y dificulta su implementación a gran escala. Esto último ha impulsado una intensa investigación académica e industrial, orientada a la búsqueda de nuevos tipos de electrocatalizadores catódicos a base de metales no nobles. En esta tesis se sintetizaron y caracterizaron materiales a base de metales no nobles para su uso como electrocatalizadores catódicos y anódicos, para su empleo en electrolizadores de baja temperatura. Como materiales catódicos se estudió la preparción, de fosfuros de hierro y fosfuros de niquel, soportados sobre carbones activados obtenidos a partir de madera de Eucalyptus grandis mediante activación química con H3PO4. En el caso de los materiales anódicos, se investigó el uso de materiales del tipo óxidos de cobalto, preparados mediante el método de autocombustión.Los materiales fueron caracterizadores desde el punto de vista fisocoquímico, incluyendo análisis estructural y morfológico (DRX, SEM-EDS), análisis químico (análisis elemental), textural (análisis textural) y térmico (TGA-DTA). La evaluación electrocatalítica de los materiales, como catalizadores en la REH y la REO, se evaluó mediante experimentos electroquímicos en celda de tres electrodos, en medio ácido o alcalino, según el caso. Para los materiales catódicos también se evaluó la producción de hidrógeno usando un gasovolúmetro adapatado para tal fin. Con estos resultados se pudo determinar la eficiencia faradaica (EF) de la reacción catódica a diferentes densidades de corrientes. Los resultados de las caracterizaciones fisicoquímicas muestran que fue posible obtener partículas de fosfuros de hierro y fosfuros de níquel de tamaño micrométrico bien distribuidas sonbre un soporte carbonoso con elevadas áreas superficiales. Los mejores resultados electroquímicos para la REH en medio ácido, se obtuvieron para los materiales con un 20% nominal de hierro (muestra Fe(20)/CHP700), cuyos valores de potencial de inicio (Einicio), sobrepotencial para alcanzar una densidad de corriente de -50 mA cm-2 (η-50) y pendiente de Tafel son: -179 mV vs. ERH, -229 mV vs. ERH y 108 mV dec-1, respectivamente. Para este material, la resistencia asociada a la REH determinada mediante espectroscopía de impedancia electroquímica fue de 1,7 Ω cm2, mientras que la retención de la actividad electrocatalítica fue 60% en 12 horas. Dentro de los materiales basados en níquel, el mejor material para la REH en medio alcalino correspondió a la muestra con 30% nominal de níquel (muestra Ni(30)/CHP700), con valores de Einicio, η-50 y pendiente de Tafel de -266 mV vs. ERH, -357 mV vs. ERH y 197 mV dec-1 respectivamente, obteniéndose una resistencia asociada a la REH de 2,5 Ω cm2 y una aceptable retención de actividad electrocatalítica.La mayor EF obtenida para los materiales basados en hierro fue para el electrocatalizador Fe(20)/CHP700, con un valor de 81,4%. Entre los materiales basados en níquel, el electrocatalizador Ni(30)/CHP700 fue el que presentó mayor EF (75,0%). En cuanto a los materiales de cobalto preparados, se logró sintetizar de forma rápida y simple materiales a base de cobalto. Los materiales son más estables y presentan mayor actividad electrocatalítica para la REO en medio básico, en comparación con el medio ácido, con Einicio igual a +1,669 y +1,559 mV vs. ERH en medio ácido y alcalino, respectivamente. Trabajos futuros se centrarán en la evaluación de los materiales mediante tests en celda completa, con el fin de determinar la curva de polarización de los mismos en condiciones similares a la de operabilidad de los electrolizadores comerciales.
eu_rights_str_mv openAccess
format doctoralThesis
id COLIBRI_23ecc0637e96138c542c804eb3eab0a8
identifier_str_mv Prieto Pastorino, N. Desarrollo de electrocatalizadores basados en metales no nobles para la producción de hidrógeno verde mediante la electrólisis del agua [en línea] Tesis de doctorado. Montevideo : Udelar. FQ, 2024
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/45163
publishDate 2024
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Prieto Pastorino Natalia2024-08-06T15:00:08Z2024-08-06T15:00:08Z2024Prieto Pastorino, N. Desarrollo de electrocatalizadores basados en metales no nobles para la producción de hidrógeno verde mediante la electrólisis del agua [en línea] Tesis de doctorado. Montevideo : Udelar. FQ, 2024https://hdl.handle.net/20.500.12008/45163En los últimos años, el hidrógeno (H2) ha despertado mucho interés nacional e internacional como vector energético para el desarrollo sustentable y la descarbonización de la economía. Una de las formas más limpias y sustentables de producir hidrógeno es a través de la electrólisis del agua, en especial mediante el uso de energía eléctrica de origen renovable (eólica, fotovoltaica, etc.), constituyendo lo que en la actualidad se denomina como hidrógeno verde. La producción electroquímica de H2 se lleva a cabo en un dispositivo denominado electrolizador, básicamente constituido por dos electrodos (ánodo y cátodo) y un electrolito. El H2 se produce en el cátodo mediante una reacción denominada como reacción de evolución de hidrógeno (REH), mientras que el ánodo ocurre la reacción de evolución de oxígeno (REO). Para que estas reacciones ocurran en forma eficiente, los electrolizadores comerciales deben utilizar materiales catódicos y anódicos a base de metales nobles (Pt, Pd, Ir, Ru, entre otros), lo que eleva sus costos y dificulta su implementación a gran escala. Esto último ha impulsado una intensa investigación académica e industrial, orientada a la búsqueda de nuevos tipos de electrocatalizadores catódicos a base de metales no nobles. En esta tesis se sintetizaron y caracterizaron materiales a base de metales no nobles para su uso como electrocatalizadores catódicos y anódicos, para su empleo en electrolizadores de baja temperatura. Como materiales catódicos se estudió la preparción, de fosfuros de hierro y fosfuros de niquel, soportados sobre carbones activados obtenidos a partir de madera de Eucalyptus grandis mediante activación química con H3PO4. En el caso de los materiales anódicos, se investigó el uso de materiales del tipo óxidos de cobalto, preparados mediante el método de autocombustión.Los materiales fueron caracterizadores desde el punto de vista fisocoquímico, incluyendo análisis estructural y morfológico (DRX, SEM-EDS), análisis químico (análisis elemental), textural (análisis textural) y térmico (TGA-DTA). La evaluación electrocatalítica de los materiales, como catalizadores en la REH y la REO, se evaluó mediante experimentos electroquímicos en celda de tres electrodos, en medio ácido o alcalino, según el caso. Para los materiales catódicos también se evaluó la producción de hidrógeno usando un gasovolúmetro adapatado para tal fin. Con estos resultados se pudo determinar la eficiencia faradaica (EF) de la reacción catódica a diferentes densidades de corrientes. Los resultados de las caracterizaciones fisicoquímicas muestran que fue posible obtener partículas de fosfuros de hierro y fosfuros de níquel de tamaño micrométrico bien distribuidas sonbre un soporte carbonoso con elevadas áreas superficiales. Los mejores resultados electroquímicos para la REH en medio ácido, se obtuvieron para los materiales con un 20% nominal de hierro (muestra Fe(20)/CHP700), cuyos valores de potencial de inicio (Einicio), sobrepotencial para alcanzar una densidad de corriente de -50 mA cm-2 (η-50) y pendiente de Tafel son: -179 mV vs. ERH, -229 mV vs. ERH y 108 mV dec-1, respectivamente. Para este material, la resistencia asociada a la REH determinada mediante espectroscopía de impedancia electroquímica fue de 1,7 Ω cm2, mientras que la retención de la actividad electrocatalítica fue 60% en 12 horas. Dentro de los materiales basados en níquel, el mejor material para la REH en medio alcalino correspondió a la muestra con 30% nominal de níquel (muestra Ni(30)/CHP700), con valores de Einicio, η-50 y pendiente de Tafel de -266 mV vs. ERH, -357 mV vs. ERH y 197 mV dec-1 respectivamente, obteniéndose una resistencia asociada a la REH de 2,5 Ω cm2 y una aceptable retención de actividad electrocatalítica.La mayor EF obtenida para los materiales basados en hierro fue para el electrocatalizador Fe(20)/CHP700, con un valor de 81,4%. Entre los materiales basados en níquel, el electrocatalizador Ni(30)/CHP700 fue el que presentó mayor EF (75,0%). En cuanto a los materiales de cobalto preparados, se logró sintetizar de forma rápida y simple materiales a base de cobalto. Los materiales son más estables y presentan mayor actividad electrocatalítica para la REO en medio básico, en comparación con el medio ácido, con Einicio igual a +1,669 y +1,559 mV vs. ERH en medio ácido y alcalino, respectivamente. Trabajos futuros se centrarán en la evaluación de los materiales mediante tests en celda completa, con el fin de determinar la curva de polarización de los mismos en condiciones similares a la de operabilidad de los electrolizadores comerciales.Submitted by Cabrera Jeniffer (jenikana@gmail.com) on 2024-08-06T14:50:00Z No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) TD_Prieto.pdf: 6857934 bytes, checksum: 412e1e21611866b45b5e083733dab7f8 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2024-08-06T15:00:08Z (GMT). No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) TD_Prieto.pdf: 6857934 bytes, checksum: 412e1e21611866b45b5e083733dab7f8 (MD5) Previous issue date: 20241 Introducción -- Marco teórico -- Objetivos de la tesis -- Objetivos generales -- Objetivos específicos -- Referencias bibliográficas -- 2 Fundamentos teóricos -- Hidrógeno verde y su importancia: características, formas de producción y usos -- Electrólisis del agua: tipos (ácida y básica), electrolizadores, componentes -- Descripción de los electrolizadores alcalinos -- Descripción de los electrolizadores tipo PEM -- La reacción de evolución de hidrógeno (REH) y sus mecanismos según el medio -- Mecanismo de reacción en medio ácido -- Mecanismo de reacción en medio básico -- Electrocatalizadores catódicos para la REH -- Criterios de selección según comportamiento electroquímico -- Tipos de electrocatalizadores catódicos para la REH -- Electrocatalizadores a base de hierro y níquel para la REH -- Métodos de síntesis de fosfuros de hierro y fosfuros de níquel -- Electrocatalizadores anódicos para la REO -- Óxidos de cobalto como electrocatalizadores para la REO -- Soportes catalíticos a base de materiales carbonosos -- Contribuciones a las características electroquímicas del electrocatalizador -- Activación física y química -- Métodos de caracterización electroquímica de electrocatalizadores -- Voltametría lineal -- Voltametría cíclica -- Espectroscopía de Impedancia Electroquímica (EIE) – Cronoamperometría -- Cuantificación de productos de reacción durante la reacción evaluada -- Referencias bibliográficas -- 3 Metodología -- Síntesis de soportes carbonosos -- Síntesis de electrocatalizadores a base de hierro para la REH -- Síntesis de electrocatalizadores a base de níquel para la REH -- Síntesis de electrocatalizadores a base de cobalto para la REO -- Caracterizaciones fisicoquímicas de los electrocatalizadores -- Difracción de Rayos X (DRX) -- Análisis Elemental -- Análisis Textural -- Microscopía Electrónica de Barrido (SEM) -- Análisis termogravimétrico (TGA) y diferencial térmico (DTA) -- Caracterizaciones electroquímicas -- Preparación del electrodo de trabajo (ET) -- Descripción y armado de la celda electroquímica de tres electrodos para medidas en medio ácido y básico -- Voltametría lineal y determinación del potencial de inicio de la REH -- Espectroscopía de Impedancia Electroquímica (EIE) – Cronoamperometría -- Cuantificación del hidrógeno producido y cálculo de eficiencias -- Caracterizaciones electroquímicas de los materiales anódicos -- Voltametrías lineales -- Voltametrías cíclicas -- Espectroscopía de Impedancia Electroquímica (EIE) – Cronoamperometría -- Referencias bibliográficas -- 4 Discusión de los resultados de las caracterizaciones fisicoquímicas de los soportes y de los electrocatalizadores catódicos -- Carbones activados -- Materiales a base de hierro -- Materiales a base de níquel -- Conclusiones parciales -- Referencias bibliográficas -- 5 Discusión de los resultados de las caracterizaciones electroquímicas de los electrocatalizadores para la REH -- Electrocatalizadores a base de hierro -- Electrocatalizadores a base de níquel -- Conclusiones parciales -- Referencias bibliográficas -- 6 Discusión de los resultados de las medidas de producción de hidrógeno y determinación de las eficiencias faradáicas -- Electrocatalizadores a base de hierro -- Electrocatalizadores a base de níquel -- Conclusiones parciales -- Referencias bibliográficas -- 7 Discusión de los resultados de las caracterizaciones fisicoquímicas y electroquímicas de los electrocatalizadores para la REO -- Caracterizaciones fisicoquímicas -- Caracterizaciones electroquímicas en medio ácido -- Caracterizaciones electroquímicas en medio básico -- Conclusiones parciales -- Referencias bibliográficas -- 8 Conclusiones y trabajos a futuro -- Conclusiones generales -- Trabajos a futuro.xxi + 155 p.application/pdfesspaUdelar. FQLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Reacción de Evolución de HidrógenoReacción de Evolución de OxígenoElectrocatalizadores a base de metales no noblesHIDRÓGENO VERDEELECTROLISIS DEL AGUAELECTROCATALIZADORDesarrollo de electrocatalizadores basados en metales no nobles para la producción de hidrógeno verde mediante la electrólisis del aguaTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaPrieto Pastorino, NataliaCuña Suárez, AndrésCastiglioni, JorgeAlmeida Leal da Silva, ElenUniversidad de la República (Uruguay). Facultad de QuímicaDoctor en QuímicaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/45163/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/45163/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-822527http://localhost:8080/xmlui/bitstream/20.500.12008/45163/3/license_textdf0749cf944f9d2754bc76e8ce56250cMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-825790http://localhost:8080/xmlui/bitstream/20.500.12008/45163/4/license_rdf489f03e71d39068f329bdec8798bce58MD54ORIGINALTD_Prieto.pdfTD_Prieto.pdfapplication/pdf6857934http://localhost:8080/xmlui/bitstream/20.500.12008/45163/1/TD_Prieto.pdf412e1e21611866b45b5e083733dab7f8MD5120.500.12008/451632024-09-13 19:19:06.075oai:colibri.udelar.edu.uy:20.500.12008/45163VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-09-13T22:19:06COLIBRI - Universidad de la Repúblicafalse
spellingShingle Desarrollo de electrocatalizadores basados en metales no nobles para la producción de hidrógeno verde mediante la electrólisis del agua
Prieto Pastorino, Natalia
Reacción de Evolución de Hidrógeno
Reacción de Evolución de Oxígeno
Electrocatalizadores a base de metales no nobles
HIDRÓGENO VERDE
ELECTROLISIS DEL AGUA
ELECTROCATALIZADOR
status_str acceptedVersion
title Desarrollo de electrocatalizadores basados en metales no nobles para la producción de hidrógeno verde mediante la electrólisis del agua
title_full Desarrollo de electrocatalizadores basados en metales no nobles para la producción de hidrógeno verde mediante la electrólisis del agua
title_fullStr Desarrollo de electrocatalizadores basados en metales no nobles para la producción de hidrógeno verde mediante la electrólisis del agua
title_full_unstemmed Desarrollo de electrocatalizadores basados en metales no nobles para la producción de hidrógeno verde mediante la electrólisis del agua
title_short Desarrollo de electrocatalizadores basados en metales no nobles para la producción de hidrógeno verde mediante la electrólisis del agua
title_sort Desarrollo de electrocatalizadores basados en metales no nobles para la producción de hidrógeno verde mediante la electrólisis del agua
topic Reacción de Evolución de Hidrógeno
Reacción de Evolución de Oxígeno
Electrocatalizadores a base de metales no nobles
HIDRÓGENO VERDE
ELECTROLISIS DEL AGUA
ELECTROCATALIZADOR
url https://hdl.handle.net/20.500.12008/45163