Desarrollo de electrocatalizadores basados en metales no nobles para la producción de hidrógeno verde mediante la electrólisis del agua

Prieto Pastorino, Natalia

Supervisor(es): Cuña Suárez, Andrés - Castiglioni, Jorge - Almeida Leal da Silva, Elen

Resumen:

En los últimos años, el hidrógeno (H2) ha despertado mucho interés nacional e internacional como vector energético para el desarrollo sustentable y la descarbonización de la economía. Una de las formas más limpias y sustentables de producir hidrógeno es a través de la electrólisis del agua, en especial mediante el uso de energía eléctrica de origen renovable (eólica, fotovoltaica, etc.), constituyendo lo que en la actualidad se denomina como hidrógeno verde. La producción electroquímica de H2 se lleva a cabo en un dispositivo denominado electrolizador, básicamente constituido por dos electrodos (ánodo y cátodo) y un electrolito. El H2 se produce en el cátodo mediante una reacción denominada como reacción de evolución de hidrógeno (REH), mientras que el ánodo ocurre la reacción de evolución de oxígeno (REO). Para que estas reacciones ocurran en forma eficiente, los electrolizadores comerciales deben utilizar materiales catódicos y anódicos a base de metales nobles (Pt, Pd, Ir, Ru, entre otros), lo que eleva sus costos y dificulta su implementación a gran escala. Esto último ha impulsado una intensa investigación académica e industrial, orientada a la búsqueda de nuevos tipos de electrocatalizadores catódicos a base de metales no nobles. En esta tesis se sintetizaron y caracterizaron materiales a base de metales no nobles para su uso como electrocatalizadores catódicos y anódicos, para su empleo en electrolizadores de baja temperatura. Como materiales catódicos se estudió la preparción, de fosfuros de hierro y fosfuros de niquel, soportados sobre carbones activados obtenidos a partir de madera de Eucalyptus grandis mediante activación química con H3PO4. En el caso de los materiales anódicos, se investigó el uso de materiales del tipo óxidos de cobalto, preparados mediante el método de autocombustión.Los materiales fueron caracterizadores desde el punto de vista fisocoquímico, incluyendo análisis estructural y morfológico (DRX, SEM-EDS), análisis químico (análisis elemental), textural (análisis textural) y térmico (TGA-DTA). La evaluación electrocatalítica de los materiales, como catalizadores en la REH y la REO, se evaluó mediante experimentos electroquímicos en celda de tres electrodos, en medio ácido o alcalino, según el caso. Para los materiales catódicos también se evaluó la producción de hidrógeno usando un gasovolúmetro adapatado para tal fin. Con estos resultados se pudo determinar la eficiencia faradaica (EF) de la reacción catódica a diferentes densidades de corrientes. Los resultados de las caracterizaciones fisicoquímicas muestran que fue posible obtener partículas de fosfuros de hierro y fosfuros de níquel de tamaño micrométrico bien distribuidas sonbre un soporte carbonoso con elevadas áreas superficiales. Los mejores resultados electroquímicos para la REH en medio ácido, se obtuvieron para los materiales con un 20% nominal de hierro (muestra Fe(20)/CHP700), cuyos valores de potencial de inicio (Einicio), sobrepotencial para alcanzar una densidad de corriente de -50 mA cm-2 (η-50) y pendiente de Tafel son: -179 mV vs. ERH, -229 mV vs. ERH y 108 mV dec-1, respectivamente. Para este material, la resistencia asociada a la REH determinada mediante espectroscopía de impedancia electroquímica fue de 1,7 Ω cm2, mientras que la retención de la actividad electrocatalítica fue 60% en 12 horas. Dentro de los materiales basados en níquel, el mejor material para la REH en medio alcalino correspondió a la muestra con 30% nominal de níquel (muestra Ni(30)/CHP700), con valores de Einicio, η-50 y pendiente de Tafel de -266 mV vs. ERH, -357 mV vs. ERH y 197 mV dec-1 respectivamente, obteniéndose una resistencia asociada a la REH de 2,5 Ω cm2 y una aceptable retención de actividad electrocatalítica.La mayor EF obtenida para los materiales basados en hierro fue para el electrocatalizador Fe(20)/CHP700, con un valor de 81,4%. Entre los materiales basados en níquel, el electrocatalizador Ni(30)/CHP700 fue el que presentó mayor EF (75,0%). En cuanto a los materiales de cobalto preparados, se logró sintetizar de forma rápida y simple materiales a base de cobalto. Los materiales son más estables y presentan mayor actividad electrocatalítica para la REO en medio básico, en comparación con el medio ácido, con Einicio igual a +1,669 y +1,559 mV vs. ERH en medio ácido y alcalino, respectivamente. Trabajos futuros se centrarán en la evaluación de los materiales mediante tests en celda completa, con el fin de determinar la curva de polarización de los mismos en condiciones similares a la de operabilidad de los electrolizadores comerciales.


Detalles Bibliográficos
2024
Reacción de Evolución de Hidrógeno
Reacción de Evolución de Oxígeno
Electrocatalizadores a base de metales no nobles
HIDRÓGENO VERDE
ELECTROLISIS DEL AGUA
ELECTROCATALIZADOR
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/45163
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Resumen:
Sumario:En los últimos años, el hidrógeno (H2) ha despertado mucho interés nacional e internacional como vector energético para el desarrollo sustentable y la descarbonización de la economía. Una de las formas más limpias y sustentables de producir hidrógeno es a través de la electrólisis del agua, en especial mediante el uso de energía eléctrica de origen renovable (eólica, fotovoltaica, etc.), constituyendo lo que en la actualidad se denomina como hidrógeno verde. La producción electroquímica de H2 se lleva a cabo en un dispositivo denominado electrolizador, básicamente constituido por dos electrodos (ánodo y cátodo) y un electrolito. El H2 se produce en el cátodo mediante una reacción denominada como reacción de evolución de hidrógeno (REH), mientras que el ánodo ocurre la reacción de evolución de oxígeno (REO). Para que estas reacciones ocurran en forma eficiente, los electrolizadores comerciales deben utilizar materiales catódicos y anódicos a base de metales nobles (Pt, Pd, Ir, Ru, entre otros), lo que eleva sus costos y dificulta su implementación a gran escala. Esto último ha impulsado una intensa investigación académica e industrial, orientada a la búsqueda de nuevos tipos de electrocatalizadores catódicos a base de metales no nobles. En esta tesis se sintetizaron y caracterizaron materiales a base de metales no nobles para su uso como electrocatalizadores catódicos y anódicos, para su empleo en electrolizadores de baja temperatura. Como materiales catódicos se estudió la preparción, de fosfuros de hierro y fosfuros de niquel, soportados sobre carbones activados obtenidos a partir de madera de Eucalyptus grandis mediante activación química con H3PO4. En el caso de los materiales anódicos, se investigó el uso de materiales del tipo óxidos de cobalto, preparados mediante el método de autocombustión.Los materiales fueron caracterizadores desde el punto de vista fisocoquímico, incluyendo análisis estructural y morfológico (DRX, SEM-EDS), análisis químico (análisis elemental), textural (análisis textural) y térmico (TGA-DTA). La evaluación electrocatalítica de los materiales, como catalizadores en la REH y la REO, se evaluó mediante experimentos electroquímicos en celda de tres electrodos, en medio ácido o alcalino, según el caso. Para los materiales catódicos también se evaluó la producción de hidrógeno usando un gasovolúmetro adapatado para tal fin. Con estos resultados se pudo determinar la eficiencia faradaica (EF) de la reacción catódica a diferentes densidades de corrientes. Los resultados de las caracterizaciones fisicoquímicas muestran que fue posible obtener partículas de fosfuros de hierro y fosfuros de níquel de tamaño micrométrico bien distribuidas sonbre un soporte carbonoso con elevadas áreas superficiales. Los mejores resultados electroquímicos para la REH en medio ácido, se obtuvieron para los materiales con un 20% nominal de hierro (muestra Fe(20)/CHP700), cuyos valores de potencial de inicio (Einicio), sobrepotencial para alcanzar una densidad de corriente de -50 mA cm-2 (η-50) y pendiente de Tafel son: -179 mV vs. ERH, -229 mV vs. ERH y 108 mV dec-1, respectivamente. Para este material, la resistencia asociada a la REH determinada mediante espectroscopía de impedancia electroquímica fue de 1,7 Ω cm2, mientras que la retención de la actividad electrocatalítica fue 60% en 12 horas. Dentro de los materiales basados en níquel, el mejor material para la REH en medio alcalino correspondió a la muestra con 30% nominal de níquel (muestra Ni(30)/CHP700), con valores de Einicio, η-50 y pendiente de Tafel de -266 mV vs. ERH, -357 mV vs. ERH y 197 mV dec-1 respectivamente, obteniéndose una resistencia asociada a la REH de 2,5 Ω cm2 y una aceptable retención de actividad electrocatalítica.La mayor EF obtenida para los materiales basados en hierro fue para el electrocatalizador Fe(20)/CHP700, con un valor de 81,4%. Entre los materiales basados en níquel, el electrocatalizador Ni(30)/CHP700 fue el que presentó mayor EF (75,0%). En cuanto a los materiales de cobalto preparados, se logró sintetizar de forma rápida y simple materiales a base de cobalto. Los materiales son más estables y presentan mayor actividad electrocatalítica para la REO en medio básico, en comparación con el medio ácido, con Einicio igual a +1,669 y +1,559 mV vs. ERH en medio ácido y alcalino, respectivamente. Trabajos futuros se centrarán en la evaluación de los materiales mediante tests en celda completa, con el fin de determinar la curva de polarización de los mismos en condiciones similares a la de operabilidad de los electrolizadores comerciales.