Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio
Supervisor(es): Vaton, Sandrine - Rubino, M.
Resumen:
Network-wide traffic analysis and monitoring in large-scale networks is a challenging and expensive task. In this thesis work we have proposed to analyze the traffic of a large-scale IP network from aggregated traffic measurements, reducing measurement overheads and simplifying implementation issues. We have provided contributions in three different networking fields related to network-wide traffic analysis and monitoring in large-scale IP networks. The first contribution regards Traffic Matrix (TM) modeling and estimation, where we have proposed new statistical models and new estimation methods to analyze the Origin-Destination (OD) flows of a large-scale TM from easily available link traffic measurements. The second contribution regards the detection and localization of volume anomalies in the TM, where we have introduced novel methods with solid optimality properties that outperform current well-known techniques for network-wide anomaly detection proposed so far in the literature. The last contribution regards the optimization of the routing configuration in large-scale IP networks, particularly when the traffic is highly variable and difficult to predict. Using the notions of Robust Routing Optimization we have proposed new approaches for Quality of Service provisioning under highly variable and uncertain traffic scenarios. In order to provide strong evidence on the relevance of our contributions, all the methods proposed in this thesis work were validated using real traffic data from different operational networks. Additionally, their performance was compared against well-known works in each field, showing outperforming results in most cases. Taking together the ensemble of developed TM models, the optimal network-wide anomaly detection and localization methods, and the routing optimization algorithms, this thesis work offers a complete solution for network operators to efficiently monitor large-scale IP networks from aggregated traffic measurements and to provide accurate QoS-based performance, even in the event of volume traffic anomalies.
El monitoreo y el análisis del tráfico de red en redes de gran escala es una tarea costosa y desafiante. En este trabajo de tesis nos hemos propuesto analizar el tráfico de una red IP de gran escala a partir de mediciones de tráfico agregado, reducciendo gastos de monitoreo y simplificando problemas de implementación. Hemos obtenido resultados importantes en tres áreas diferentes relacionadas con el monitoreo y el análisis del tráfico de red en redes IP a gran escala. El primer resultado concierne el modelado y la estimación de la matriz de tráfico (TM), donde hemos propuesto nuevos modelos estadísticos y nuevos métodos de estimación para analizar la flujos Origen-Destino (OD) de una TM a gran escala, a partir de mediciones de volumen en los enlaces de red, fácilmente obtenibles en los sistemas de monitoreo de red de gran escala disponibles en la actualidad. El segundo aporte corresponde con la detección y localización automática de anomalías de volumen en la TM, donde hemos introducido nuevos métodos con sólidas propiedades de optimalidad y cuyo desempeño supera el de las técnicas actualmente propuestas en la literatura para detección de anomalías de red. La última contribución considera la optimización de la configuración del enrutamiento en redes IP a gran escala, especialmente cuando el tráfico en la red es altamente variable y difícil de predecir. Utilizando las nociones de optimización robusta del enrutamiento en la red, hemos propuesto nuevos enfoques para la provisión de calidad de servicio en escenarios donde el tráfico de red es altamente variable e incierto. Con el fin de proporcionar pruebas sólidas sobre la relevancia de nuestras contribuciones, todas los métodos propuestos en este trabajo de tesis han sido evaluados y validados utilizando mediciones de tráfico real en distintas redes operativas. Al mismo tiempo, su desempeño ha sido comparado contra el obtenido por técnicas bien conocidas en cada área, mostrando mejores resultados en la mayoría de los casos. Tomando el conjunto de técnicas desarrolladas respecto del modelado de la TM, la detección y localización óptima de anomalías de red, y los algoritmos de optimización robusta del enrutamineto en la red, este trabajo de tesis ofrece una solución completa para el monitoreo eficiente de redes IP de gran escala a partir de medidas de tráfico agregado, así como también un mecanismo automático para proporcionar niveles de calidad de servicio en caso de anomalías de tráfico.
2013 | |
Traffic matrix Network-wide traffic monitoring Modeling and estimation Optimal volume anomaly detection and localization Proactive traffic management Robust routing Dynamic load balancing Reactive robust load balancing Quality of service Matriz de tráfico Monitoreo de tráfico Modelado y estimación de la matriz de tráfico Detección y localización óptimas de anomalías de volumen Ingeniería de tráfico Calidad de servicio Enrutamiento robusto |
|
Español | |
Universidad de la República | |
COLIBRI | |
http://hdl.handle.net/20.500.12008/2893 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
_version_ | 1807522998831284224 |
---|---|
author | Casas, Pedro |
author_facet | Casas, Pedro |
author_role | author |
bitstream.checksum.fl_str_mv | 528b6a3c8c7d0c6e28129d576e989607 9833653f73f7853880c94a6fead477b1 4afdbb8c545fd630ea7db775da747b2f 9da0b6dfac957114c6a7714714b86306 81d5570f5215b774021a4ae27b552bfe |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/2893/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/2893/2/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/2893/3/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/2893/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/2893/1/tesis_CASAS_udelar.pdf |
collection | COLIBRI |
dc.creator.advisor.none.fl_str_mv | Vaton, Sandrine Rubino, M. |
dc.creator.none.fl_str_mv | Casas, Pedro |
dc.date.accessioned.none.fl_str_mv | 2014-11-24T22:21:47Z |
dc.date.available.none.fl_str_mv | 2014-11-24T22:21:47Z |
dc.date.issued.es.fl_str_mv | 2013 |
dc.date.submitted.es.fl_str_mv | 20141202 |
dc.description.abstract.none.fl_txt_mv | Network-wide traffic analysis and monitoring in large-scale networks is a challenging and expensive task. In this thesis work we have proposed to analyze the traffic of a large-scale IP network from aggregated traffic measurements, reducing measurement overheads and simplifying implementation issues. We have provided contributions in three different networking fields related to network-wide traffic analysis and monitoring in large-scale IP networks. The first contribution regards Traffic Matrix (TM) modeling and estimation, where we have proposed new statistical models and new estimation methods to analyze the Origin-Destination (OD) flows of a large-scale TM from easily available link traffic measurements. The second contribution regards the detection and localization of volume anomalies in the TM, where we have introduced novel methods with solid optimality properties that outperform current well-known techniques for network-wide anomaly detection proposed so far in the literature. The last contribution regards the optimization of the routing configuration in large-scale IP networks, particularly when the traffic is highly variable and difficult to predict. Using the notions of Robust Routing Optimization we have proposed new approaches for Quality of Service provisioning under highly variable and uncertain traffic scenarios. In order to provide strong evidence on the relevance of our contributions, all the methods proposed in this thesis work were validated using real traffic data from different operational networks. Additionally, their performance was compared against well-known works in each field, showing outperforming results in most cases. Taking together the ensemble of developed TM models, the optimal network-wide anomaly detection and localization methods, and the routing optimization algorithms, this thesis work offers a complete solution for network operators to efficiently monitor large-scale IP networks from aggregated traffic measurements and to provide accurate QoS-based performance, even in the event of volume traffic anomalies. El monitoreo y el análisis del tráfico de red en redes de gran escala es una tarea costosa y desafiante. En este trabajo de tesis nos hemos propuesto analizar el tráfico de una red IP de gran escala a partir de mediciones de tráfico agregado, reducciendo gastos de monitoreo y simplificando problemas de implementación. Hemos obtenido resultados importantes en tres áreas diferentes relacionadas con el monitoreo y el análisis del tráfico de red en redes IP a gran escala. El primer resultado concierne el modelado y la estimación de la matriz de tráfico (TM), donde hemos propuesto nuevos modelos estadísticos y nuevos métodos de estimación para analizar la flujos Origen-Destino (OD) de una TM a gran escala, a partir de mediciones de volumen en los enlaces de red, fácilmente obtenibles en los sistemas de monitoreo de red de gran escala disponibles en la actualidad. El segundo aporte corresponde con la detección y localización automática de anomalías de volumen en la TM, donde hemos introducido nuevos métodos con sólidas propiedades de optimalidad y cuyo desempeño supera el de las técnicas actualmente propuestas en la literatura para detección de anomalías de red. La última contribución considera la optimización de la configuración del enrutamiento en redes IP a gran escala, especialmente cuando el tráfico en la red es altamente variable y difícil de predecir. Utilizando las nociones de optimización robusta del enrutamiento en la red, hemos propuesto nuevos enfoques para la provisión de calidad de servicio en escenarios donde el tráfico de red es altamente variable e incierto. Con el fin de proporcionar pruebas sólidas sobre la relevancia de nuestras contribuciones, todas los métodos propuestos en este trabajo de tesis han sido evaluados y validados utilizando mediciones de tráfico real en distintas redes operativas. Al mismo tiempo, su desempeño ha sido comparado contra el obtenido por técnicas bien conocidas en cada área, mostrando mejores resultados en la mayoría de los casos. Tomando el conjunto de técnicas desarrolladas respecto del modelado de la TM, la detección y localización óptima de anomalías de red, y los algoritmos de optimización robusta del enrutamineto en la red, este trabajo de tesis ofrece una solución completa para el monitoreo eficiente de redes IP de gran escala a partir de medidas de tráfico agregado, así como también un mecanismo automático para proporcionar niveles de calidad de servicio en caso de anomalías de tráfico. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | CASAS, P. "Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio". Tesis de maestría. Montevideo : UR. FI-IIE, 2013. |
dc.identifier.uri.none.fl_str_mv | http://hdl.handle.net/20.500.12008/2893 |
dc.language.iso.none.fl_str_mv | es spa |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.en.fl_str_mv | Traffic matrix Network-wide traffic monitoring Modeling and estimation Optimal volume anomaly detection and localization Proactive traffic management Robust routing Dynamic load balancing Reactive robust load balancing Quality of service |
dc.subject.es.fl_str_mv | Matriz de tráfico Monitoreo de tráfico Modelado y estimación de la matriz de tráfico Detección y localización óptimas de anomalías de volumen Ingeniería de tráfico Calidad de servicio Enrutamiento robusto |
dc.title.none.fl_str_mv | Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio |
dc.type.es.fl_str_mv | Tesis de maestría |
dc.type.none.fl_str_mv | info:eu-repo/semantics/masterThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | Network-wide traffic analysis and monitoring in large-scale networks is a challenging and expensive task. In this thesis work we have proposed to analyze the traffic of a large-scale IP network from aggregated traffic measurements, reducing measurement overheads and simplifying implementation issues. We have provided contributions in three different networking fields related to network-wide traffic analysis and monitoring in large-scale IP networks. The first contribution regards Traffic Matrix (TM) modeling and estimation, where we have proposed new statistical models and new estimation methods to analyze the Origin-Destination (OD) flows of a large-scale TM from easily available link traffic measurements. The second contribution regards the detection and localization of volume anomalies in the TM, where we have introduced novel methods with solid optimality properties that outperform current well-known techniques for network-wide anomaly detection proposed so far in the literature. The last contribution regards the optimization of the routing configuration in large-scale IP networks, particularly when the traffic is highly variable and difficult to predict. Using the notions of Robust Routing Optimization we have proposed new approaches for Quality of Service provisioning under highly variable and uncertain traffic scenarios. In order to provide strong evidence on the relevance of our contributions, all the methods proposed in this thesis work were validated using real traffic data from different operational networks. Additionally, their performance was compared against well-known works in each field, showing outperforming results in most cases. Taking together the ensemble of developed TM models, the optimal network-wide anomaly detection and localization methods, and the routing optimization algorithms, this thesis work offers a complete solution for network operators to efficiently monitor large-scale IP networks from aggregated traffic measurements and to provide accurate QoS-based performance, even in the event of volume traffic anomalies. |
eu_rights_str_mv | openAccess |
format | masterThesis |
id | COLIBRI_23c9d21ec519ff1ff0cb624bef117efd |
identifier_str_mv | CASAS, P. "Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio". Tesis de maestría. Montevideo : UR. FI-IIE, 2013. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/2893 |
publishDate | 2013 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
spelling | 2014-11-24T22:21:47Z2014-11-24T22:21:47Z201320141202CASAS, P. "Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio". Tesis de maestría. Montevideo : UR. FI-IIE, 2013.http://hdl.handle.net/20.500.12008/2893Network-wide traffic analysis and monitoring in large-scale networks is a challenging and expensive task. In this thesis work we have proposed to analyze the traffic of a large-scale IP network from aggregated traffic measurements, reducing measurement overheads and simplifying implementation issues. We have provided contributions in three different networking fields related to network-wide traffic analysis and monitoring in large-scale IP networks. The first contribution regards Traffic Matrix (TM) modeling and estimation, where we have proposed new statistical models and new estimation methods to analyze the Origin-Destination (OD) flows of a large-scale TM from easily available link traffic measurements. The second contribution regards the detection and localization of volume anomalies in the TM, where we have introduced novel methods with solid optimality properties that outperform current well-known techniques for network-wide anomaly detection proposed so far in the literature. The last contribution regards the optimization of the routing configuration in large-scale IP networks, particularly when the traffic is highly variable and difficult to predict. Using the notions of Robust Routing Optimization we have proposed new approaches for Quality of Service provisioning under highly variable and uncertain traffic scenarios. In order to provide strong evidence on the relevance of our contributions, all the methods proposed in this thesis work were validated using real traffic data from different operational networks. Additionally, their performance was compared against well-known works in each field, showing outperforming results in most cases. Taking together the ensemble of developed TM models, the optimal network-wide anomaly detection and localization methods, and the routing optimization algorithms, this thesis work offers a complete solution for network operators to efficiently monitor large-scale IP networks from aggregated traffic measurements and to provide accurate QoS-based performance, even in the event of volume traffic anomalies.El monitoreo y el análisis del tráfico de red en redes de gran escala es una tarea costosa y desafiante. En este trabajo de tesis nos hemos propuesto analizar el tráfico de una red IP de gran escala a partir de mediciones de tráfico agregado, reducciendo gastos de monitoreo y simplificando problemas de implementación. Hemos obtenido resultados importantes en tres áreas diferentes relacionadas con el monitoreo y el análisis del tráfico de red en redes IP a gran escala. El primer resultado concierne el modelado y la estimación de la matriz de tráfico (TM), donde hemos propuesto nuevos modelos estadísticos y nuevos métodos de estimación para analizar la flujos Origen-Destino (OD) de una TM a gran escala, a partir de mediciones de volumen en los enlaces de red, fácilmente obtenibles en los sistemas de monitoreo de red de gran escala disponibles en la actualidad. El segundo aporte corresponde con la detección y localización automática de anomalías de volumen en la TM, donde hemos introducido nuevos métodos con sólidas propiedades de optimalidad y cuyo desempeño supera el de las técnicas actualmente propuestas en la literatura para detección de anomalías de red. La última contribución considera la optimización de la configuración del enrutamiento en redes IP a gran escala, especialmente cuando el tráfico en la red es altamente variable y difícil de predecir. Utilizando las nociones de optimización robusta del enrutamiento en la red, hemos propuesto nuevos enfoques para la provisión de calidad de servicio en escenarios donde el tráfico de red es altamente variable e incierto. Con el fin de proporcionar pruebas sólidas sobre la relevancia de nuestras contribuciones, todas los métodos propuestos en este trabajo de tesis han sido evaluados y validados utilizando mediciones de tráfico real en distintas redes operativas. Al mismo tiempo, su desempeño ha sido comparado contra el obtenido por técnicas bien conocidas en cada área, mostrando mejores resultados en la mayoría de los casos. Tomando el conjunto de técnicas desarrolladas respecto del modelado de la TM, la detección y localización óptima de anomalías de red, y los algoritmos de optimización robusta del enrutamineto en la red, este trabajo de tesis ofrece una solución completa para el monitoreo eficiente de redes IP de gran escala a partir de medidas de tráfico agregado, así como también un mecanismo automático para proporcionar niveles de calidad de servicio en caso de anomalías de tráfico.Made available in DSpace on 2014-11-24T22:21:47Z (GMT). No. of bitstreams: 5 tesis_CASAS_udelar.pdf: 3327498 bytes, checksum: 81d5570f5215b774021a4ae27b552bfe (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4244 bytes, checksum: 528b6a3c8c7d0c6e28129d576e989607 (MD5) Previous issue date: 2013application/pdfesspaLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)Traffic matrixNetwork-wide traffic monitoringModeling and estimationOptimal volume anomaly detection and localizationProactive traffic managementRobust routingDynamic load balancingReactive robust load balancingQuality of serviceMatriz de tráficoMonitoreo de tráficoModelado y estimación de la matriz de tráficoDetección y localización óptimas de anomalías de volumenIngeniería de tráficoCalidad de servicioEnrutamiento robustoAnálisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicioTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaCasas, PedroVaton, SandrineRubino, M.Universidad de la Republica (Uruguay). Facultad de IngenieriaMagíster en Ingeniería eléctricaTelecomunicacionesAnálisis de Redes, Tráfico y Estadísticas de ServiciosLICENSElicense.txttext/plain4244http://localhost:8080/xmlui/bitstream/20.500.12008/2893/5/license.txt528b6a3c8c7d0c6e28129d576e989607MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/2893/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/2893/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/2893/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALtesis_CASAS_udelar.pdfapplication/pdf3327498http://localhost:8080/xmlui/bitstream/20.500.12008/2893/1/tesis_CASAS_udelar.pdf81d5570f5215b774021a4ae27b552bfeMD5120.500.12008/28932024-07-25 15:18:58.648oai:colibri.udelar.edu.uy:20.500.12008/2893VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMNCg0KDQpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIA0KDQpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdO+/vXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGRlcO+/vXNpdG8gZW4gQ09MSUJSSSwgbGEgVW5pdmVyc2lkYWQgZGUgUmVw77+9YmxpY2EgcHJvY2VkZXLvv70gYTogIA0KDQphKSBhcmNoaXZhciBt77+9cyBkZSB1bmEgY29waWEgZGUgbGEgb2JyYSBlbiBsb3Mgc2Vydmlkb3JlcyBkZSBsYSBVbml2ZXJzaWRhZCBhIGxvcyBlZmVjdG9zIGRlIGdhcmFudGl6YXIgYWNjZXNvLCBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNp77+9bg0KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nvv71uIHkgYWNjZXNpYmlsaWRhZCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8uDQpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuDQoNCg0KRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4NCg0KRWwgYXV0b3IgYXNlZ3VyYSBxdWUgbGEgb2JyYSBubyBpbmZyaWdlIG5pbmfvv71uIGRlcmVjaG8gc29icmUgdGVyY2Vyb3MsIHlhIHNlYSBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3Ryby4NCg0KRWwgYXV0b3IgZ2FyYW50aXphIHF1ZSBzaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgY3VhbGVzIG5vIHRpZW5lIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgeSBxdWUgZXNlIG1hdGVyaWFsIGN1eW9zIGRlcmVjaG9zIHNvbiBkZSB0ZXJjZXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZGVwb3NpdGFkbyBlbiBlbCBSZXBvc2l0b3Jpby4NCg0KRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuDQoNCkVsIGF1dG9yIHNlcu+/vSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcu+/vSByZXNwb25zYWJsZSBwb3IgbGFzIGV2ZW50dWFsZXMgdmlvbGFjaW9uZXMgYWwgZGVyZWNobyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZW4gcXVlIHB1ZWRhIGluY3VycmlyIGVsIGF1dG9yLg0KDQpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNp77+9biBkZSBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGxhIFVERUxBUiAgYWRvcHRhcu+/vSB0b2RhcyBsYXMgbWVkaWRhcyBuZWNlc2FyaWFzIHBhcmEgZXZpdGFyIGxhIGNvbnRpbnVhY2nvv71uIGRlIGRpY2hhIGluZnJhY2Np77+9biwgbGFzIHF1ZSBwb2Ry77+9biBpbmNsdWlyIGVsIHJldGlybyBkZWwgYWNjZXNvIGEgbG9zIGNvbnRlbmlkb3MgeS9vIG1ldGFkYXRvcyBkZWwgZG9jdW1lbnRvIHJlc3BlY3Rpdm8uDQoNCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoNCg0KDQpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLg0KDQpBdHJpYnVjae+/vW4g77+9IENvbXBhcnRpciBJZ3VhbCAoQ0MgLSBCeS1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgZGViZSBoYWNlcnNlIG1lZGlhbnRlIHVuYSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuDQoNCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuDQoNCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IENvbXBhcnRpciBJZ3VhbCAoQ0Mg77+9IEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjae+/vW4gZGUgbGFzIG9icmFzIGRlcml2YWRhcyBzZSBoYWdhIG1lZGlhbnRlIGxpY2VuY2lhIGlk77+9bnRpY2EgYSBsYSBkZSBsYSBvYnJhIG9yaWdpbmFsLCByZWNvbm9jaWVuZG8gYSBsb3MgYXV0b3Jlcy4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IFNpbiBEZXJpdmFkYXMgKENDIC0gQnktTkMtTkQpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSwgcGVybyBubyBzZSBwZXJtaXRlIGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzIHkgbm8gc2UgcGVybWl0ZSB1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBkZWJpZW5kbyByZWNvbm9jZXIgYWwgYXV0b3IuDQoNCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4NCg0KQ3VhbmRvIHNlIHNlbGVjY2lvbmUgdW5hIGxpY2VuY2lhIHF1ZSBoYWJpbGl0ZSB1c29zIGNvbWVyY2lhbGVzLCBlbCBkZXDvv71zaXRvIGRlYmVy77+9IHNlciBhY29tcGHvv71hZG8gZGVsIGF2YWwgZGVsIGplcmFyY2Egbe+/vXhpbW8gZGVsIFNlcnZpY2lvIGNvcnJlc3BvbmRpZW50ZS4NCg0KDQoNCg0KDQoNCg0KDQo=Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-08-13T03:01:05.185808COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio Casas, Pedro Traffic matrix Network-wide traffic monitoring Modeling and estimation Optimal volume anomaly detection and localization Proactive traffic management Robust routing Dynamic load balancing Reactive robust load balancing Quality of service Matriz de tráfico Monitoreo de tráfico Modelado y estimación de la matriz de tráfico Detección y localización óptimas de anomalías de volumen Ingeniería de tráfico Calidad de servicio Enrutamiento robusto |
status_str | acceptedVersion |
title | Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio |
title_full | Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio |
title_fullStr | Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio |
title_full_unstemmed | Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio |
title_short | Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio |
title_sort | Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio |
topic | Traffic matrix Network-wide traffic monitoring Modeling and estimation Optimal volume anomaly detection and localization Proactive traffic management Robust routing Dynamic load balancing Reactive robust load balancing Quality of service Matriz de tráfico Monitoreo de tráfico Modelado y estimación de la matriz de tráfico Detección y localización óptimas de anomalías de volumen Ingeniería de tráfico Calidad de servicio Enrutamiento robusto |
url | http://hdl.handle.net/20.500.12008/2893 |