Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio

Casas, Pedro

Supervisor(es): Vaton, Sandrine - Rubino, M.

Resumen:

Network-wide traffic analysis and monitoring in large-scale networks is a challenging and expensive task. In this thesis work we have proposed to analyze the traffic of a large-scale IP network from aggregated traffic measurements, reducing measurement overheads and simplifying implementation issues. We have provided contributions in three different networking fields related to network-wide traffic analysis and monitoring in large-scale IP networks. The first contribution regards Traffic Matrix (TM) modeling and estimation, where we have proposed new statistical models and new estimation methods to analyze the Origin-Destination (OD) flows of a large-scale TM from easily available link traffic measurements. The second contribution regards the detection and localization of volume anomalies in the TM, where we have introduced novel methods with solid optimality properties that outperform current well-known techniques for network-wide anomaly detection proposed so far in the literature. The last contribution regards the optimization of the routing configuration in large-scale IP networks, particularly when the traffic is highly variable and difficult to predict. Using the notions of Robust Routing Optimization we have proposed new approaches for Quality of Service provisioning under highly variable and uncertain traffic scenarios. In order to provide strong evidence on the relevance of our contributions, all the methods proposed in this thesis work were validated using real traffic data from different operational networks. Additionally, their performance was compared against well-known works in each field, showing outperforming results in most cases. Taking together the ensemble of developed TM models, the optimal network-wide anomaly detection and localization methods, and the routing optimization algorithms, this thesis work offers a complete solution for network operators to efficiently monitor large-scale IP networks from aggregated traffic measurements and to provide accurate QoS-based performance, even in the event of volume traffic anomalies.


El monitoreo y el análisis del tráfico de red en redes de gran escala es una tarea costosa y desafiante. En este trabajo de tesis nos hemos propuesto analizar el tráfico de una red IP de gran escala a partir de mediciones de tráfico agregado, reducciendo gastos de monitoreo y simplificando problemas de implementación. Hemos obtenido resultados importantes en tres áreas diferentes relacionadas con el monitoreo y el análisis del tráfico de red en redes IP a gran escala. El primer resultado concierne el modelado y la estimación de la matriz de tráfico (TM), donde hemos propuesto nuevos modelos estadísticos y nuevos métodos de estimación para analizar la flujos Origen-Destino (OD) de una TM a gran escala, a partir de mediciones de volumen en los enlaces de red, fácilmente obtenibles en los sistemas de monitoreo de red de gran escala disponibles en la actualidad. El segundo aporte corresponde con la detección y localización automática de anomalías de volumen en la TM, donde hemos introducido nuevos métodos con sólidas propiedades de optimalidad y cuyo desempeño supera el de las técnicas actualmente propuestas en la literatura para detección de anomalías de red. La última contribución considera la optimización de la configuración del enrutamiento en redes IP a gran escala, especialmente cuando el tráfico en la red es altamente variable y difícil de predecir. Utilizando las nociones de optimización robusta del enrutamiento en la red, hemos propuesto nuevos enfoques para la provisión de calidad de servicio en escenarios donde el tráfico de red es altamente variable e incierto. Con el fin de proporcionar pruebas sólidas sobre la relevancia de nuestras contribuciones, todas los métodos propuestos en este trabajo de tesis han sido evaluados y validados utilizando mediciones de tráfico real en distintas redes operativas. Al mismo tiempo, su desempeño ha sido comparado contra el obtenido por técnicas bien conocidas en cada área, mostrando mejores resultados en la mayoría de los casos. Tomando el conjunto de técnicas desarrolladas respecto del modelado de la TM, la detección y localización óptima de anomalías de red, y los algoritmos de optimización robusta del enrutamineto en la red, este trabajo de tesis ofrece una solución completa para el monitoreo eficiente de redes IP de gran escala a partir de medidas de tráfico agregado, así como también un mecanismo automático para proporcionar niveles de calidad de servicio en caso de anomalías de tráfico.


Detalles Bibliográficos
2013
Traffic matrix
Network-wide traffic monitoring
Modeling and estimation
Optimal volume anomaly detection and localization
Proactive traffic management
Robust routing
Dynamic load balancing
Reactive robust load balancing
Quality of service
Matriz de tráfico
Monitoreo de tráfico
Modelado y estimación de la matriz de tráfico
Detección y localización óptimas de anomalías de volumen
Ingeniería de tráfico
Calidad de servicio
Enrutamiento robusto
Español
Universidad de la República
COLIBRI
http://hdl.handle.net/20.500.12008/2893
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
_version_ 1807522998831284224
author Casas, Pedro
author_facet Casas, Pedro
author_role author
bitstream.checksum.fl_str_mv 528b6a3c8c7d0c6e28129d576e989607
9833653f73f7853880c94a6fead477b1
4afdbb8c545fd630ea7db775da747b2f
9da0b6dfac957114c6a7714714b86306
81d5570f5215b774021a4ae27b552bfe
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/2893/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/2893/2/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/2893/3/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/2893/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/2893/1/tesis_CASAS_udelar.pdf
collection COLIBRI
dc.creator.advisor.none.fl_str_mv Vaton, Sandrine
Rubino, M.
dc.creator.none.fl_str_mv Casas, Pedro
dc.date.accessioned.none.fl_str_mv 2014-11-24T22:21:47Z
dc.date.available.none.fl_str_mv 2014-11-24T22:21:47Z
dc.date.issued.es.fl_str_mv 2013
dc.date.submitted.es.fl_str_mv 20141202
dc.description.abstract.none.fl_txt_mv Network-wide traffic analysis and monitoring in large-scale networks is a challenging and expensive task. In this thesis work we have proposed to analyze the traffic of a large-scale IP network from aggregated traffic measurements, reducing measurement overheads and simplifying implementation issues. We have provided contributions in three different networking fields related to network-wide traffic analysis and monitoring in large-scale IP networks. The first contribution regards Traffic Matrix (TM) modeling and estimation, where we have proposed new statistical models and new estimation methods to analyze the Origin-Destination (OD) flows of a large-scale TM from easily available link traffic measurements. The second contribution regards the detection and localization of volume anomalies in the TM, where we have introduced novel methods with solid optimality properties that outperform current well-known techniques for network-wide anomaly detection proposed so far in the literature. The last contribution regards the optimization of the routing configuration in large-scale IP networks, particularly when the traffic is highly variable and difficult to predict. Using the notions of Robust Routing Optimization we have proposed new approaches for Quality of Service provisioning under highly variable and uncertain traffic scenarios. In order to provide strong evidence on the relevance of our contributions, all the methods proposed in this thesis work were validated using real traffic data from different operational networks. Additionally, their performance was compared against well-known works in each field, showing outperforming results in most cases. Taking together the ensemble of developed TM models, the optimal network-wide anomaly detection and localization methods, and the routing optimization algorithms, this thesis work offers a complete solution for network operators to efficiently monitor large-scale IP networks from aggregated traffic measurements and to provide accurate QoS-based performance, even in the event of volume traffic anomalies.
El monitoreo y el análisis del tráfico de red en redes de gran escala es una tarea costosa y desafiante. En este trabajo de tesis nos hemos propuesto analizar el tráfico de una red IP de gran escala a partir de mediciones de tráfico agregado, reducciendo gastos de monitoreo y simplificando problemas de implementación. Hemos obtenido resultados importantes en tres áreas diferentes relacionadas con el monitoreo y el análisis del tráfico de red en redes IP a gran escala. El primer resultado concierne el modelado y la estimación de la matriz de tráfico (TM), donde hemos propuesto nuevos modelos estadísticos y nuevos métodos de estimación para analizar la flujos Origen-Destino (OD) de una TM a gran escala, a partir de mediciones de volumen en los enlaces de red, fácilmente obtenibles en los sistemas de monitoreo de red de gran escala disponibles en la actualidad. El segundo aporte corresponde con la detección y localización automática de anomalías de volumen en la TM, donde hemos introducido nuevos métodos con sólidas propiedades de optimalidad y cuyo desempeño supera el de las técnicas actualmente propuestas en la literatura para detección de anomalías de red. La última contribución considera la optimización de la configuración del enrutamiento en redes IP a gran escala, especialmente cuando el tráfico en la red es altamente variable y difícil de predecir. Utilizando las nociones de optimización robusta del enrutamiento en la red, hemos propuesto nuevos enfoques para la provisión de calidad de servicio en escenarios donde el tráfico de red es altamente variable e incierto. Con el fin de proporcionar pruebas sólidas sobre la relevancia de nuestras contribuciones, todas los métodos propuestos en este trabajo de tesis han sido evaluados y validados utilizando mediciones de tráfico real en distintas redes operativas. Al mismo tiempo, su desempeño ha sido comparado contra el obtenido por técnicas bien conocidas en cada área, mostrando mejores resultados en la mayoría de los casos. Tomando el conjunto de técnicas desarrolladas respecto del modelado de la TM, la detección y localización óptima de anomalías de red, y los algoritmos de optimización robusta del enrutamineto en la red, este trabajo de tesis ofrece una solución completa para el monitoreo eficiente de redes IP de gran escala a partir de medidas de tráfico agregado, así como también un mecanismo automático para proporcionar niveles de calidad de servicio en caso de anomalías de tráfico.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv CASAS, P. "Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio". Tesis de maestría. Montevideo : UR. FI-IIE, 2013.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12008/2893
dc.language.iso.none.fl_str_mv es
spa
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.en.fl_str_mv Traffic matrix
Network-wide traffic monitoring
Modeling and estimation
Optimal volume anomaly detection and localization
Proactive traffic management
Robust routing
Dynamic load balancing
Reactive robust load balancing
Quality of service
dc.subject.es.fl_str_mv Matriz de tráfico
Monitoreo de tráfico
Modelado y estimación de la matriz de tráfico
Detección y localización óptimas de anomalías de volumen
Ingeniería de tráfico
Calidad de servicio
Enrutamiento robusto
dc.title.none.fl_str_mv Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Network-wide traffic analysis and monitoring in large-scale networks is a challenging and expensive task. In this thesis work we have proposed to analyze the traffic of a large-scale IP network from aggregated traffic measurements, reducing measurement overheads and simplifying implementation issues. We have provided contributions in three different networking fields related to network-wide traffic analysis and monitoring in large-scale IP networks. The first contribution regards Traffic Matrix (TM) modeling and estimation, where we have proposed new statistical models and new estimation methods to analyze the Origin-Destination (OD) flows of a large-scale TM from easily available link traffic measurements. The second contribution regards the detection and localization of volume anomalies in the TM, where we have introduced novel methods with solid optimality properties that outperform current well-known techniques for network-wide anomaly detection proposed so far in the literature. The last contribution regards the optimization of the routing configuration in large-scale IP networks, particularly when the traffic is highly variable and difficult to predict. Using the notions of Robust Routing Optimization we have proposed new approaches for Quality of Service provisioning under highly variable and uncertain traffic scenarios. In order to provide strong evidence on the relevance of our contributions, all the methods proposed in this thesis work were validated using real traffic data from different operational networks. Additionally, their performance was compared against well-known works in each field, showing outperforming results in most cases. Taking together the ensemble of developed TM models, the optimal network-wide anomaly detection and localization methods, and the routing optimization algorithms, this thesis work offers a complete solution for network operators to efficiently monitor large-scale IP networks from aggregated traffic measurements and to provide accurate QoS-based performance, even in the event of volume traffic anomalies.
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_23c9d21ec519ff1ff0cb624bef117efd
identifier_str_mv CASAS, P. "Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio". Tesis de maestría. Montevideo : UR. FI-IIE, 2013.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/2893
publishDate 2013
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
spelling 2014-11-24T22:21:47Z2014-11-24T22:21:47Z201320141202CASAS, P. "Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio". Tesis de maestría. Montevideo : UR. FI-IIE, 2013.http://hdl.handle.net/20.500.12008/2893Network-wide traffic analysis and monitoring in large-scale networks is a challenging and expensive task. In this thesis work we have proposed to analyze the traffic of a large-scale IP network from aggregated traffic measurements, reducing measurement overheads and simplifying implementation issues. We have provided contributions in three different networking fields related to network-wide traffic analysis and monitoring in large-scale IP networks. The first contribution regards Traffic Matrix (TM) modeling and estimation, where we have proposed new statistical models and new estimation methods to analyze the Origin-Destination (OD) flows of a large-scale TM from easily available link traffic measurements. The second contribution regards the detection and localization of volume anomalies in the TM, where we have introduced novel methods with solid optimality properties that outperform current well-known techniques for network-wide anomaly detection proposed so far in the literature. The last contribution regards the optimization of the routing configuration in large-scale IP networks, particularly when the traffic is highly variable and difficult to predict. Using the notions of Robust Routing Optimization we have proposed new approaches for Quality of Service provisioning under highly variable and uncertain traffic scenarios. In order to provide strong evidence on the relevance of our contributions, all the methods proposed in this thesis work were validated using real traffic data from different operational networks. Additionally, their performance was compared against well-known works in each field, showing outperforming results in most cases. Taking together the ensemble of developed TM models, the optimal network-wide anomaly detection and localization methods, and the routing optimization algorithms, this thesis work offers a complete solution for network operators to efficiently monitor large-scale IP networks from aggregated traffic measurements and to provide accurate QoS-based performance, even in the event of volume traffic anomalies.El monitoreo y el análisis del tráfico de red en redes de gran escala es una tarea costosa y desafiante. En este trabajo de tesis nos hemos propuesto analizar el tráfico de una red IP de gran escala a partir de mediciones de tráfico agregado, reducciendo gastos de monitoreo y simplificando problemas de implementación. Hemos obtenido resultados importantes en tres áreas diferentes relacionadas con el monitoreo y el análisis del tráfico de red en redes IP a gran escala. El primer resultado concierne el modelado y la estimación de la matriz de tráfico (TM), donde hemos propuesto nuevos modelos estadísticos y nuevos métodos de estimación para analizar la flujos Origen-Destino (OD) de una TM a gran escala, a partir de mediciones de volumen en los enlaces de red, fácilmente obtenibles en los sistemas de monitoreo de red de gran escala disponibles en la actualidad. El segundo aporte corresponde con la detección y localización automática de anomalías de volumen en la TM, donde hemos introducido nuevos métodos con sólidas propiedades de optimalidad y cuyo desempeño supera el de las técnicas actualmente propuestas en la literatura para detección de anomalías de red. La última contribución considera la optimización de la configuración del enrutamiento en redes IP a gran escala, especialmente cuando el tráfico en la red es altamente variable y difícil de predecir. Utilizando las nociones de optimización robusta del enrutamiento en la red, hemos propuesto nuevos enfoques para la provisión de calidad de servicio en escenarios donde el tráfico de red es altamente variable e incierto. Con el fin de proporcionar pruebas sólidas sobre la relevancia de nuestras contribuciones, todas los métodos propuestos en este trabajo de tesis han sido evaluados y validados utilizando mediciones de tráfico real en distintas redes operativas. Al mismo tiempo, su desempeño ha sido comparado contra el obtenido por técnicas bien conocidas en cada área, mostrando mejores resultados en la mayoría de los casos. Tomando el conjunto de técnicas desarrolladas respecto del modelado de la TM, la detección y localización óptima de anomalías de red, y los algoritmos de optimización robusta del enrutamineto en la red, este trabajo de tesis ofrece una solución completa para el monitoreo eficiente de redes IP de gran escala a partir de medidas de tráfico agregado, así como también un mecanismo automático para proporcionar niveles de calidad de servicio en caso de anomalías de tráfico.Made available in DSpace on 2014-11-24T22:21:47Z (GMT). No. of bitstreams: 5 tesis_CASAS_udelar.pdf: 3327498 bytes, checksum: 81d5570f5215b774021a4ae27b552bfe (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4244 bytes, checksum: 528b6a3c8c7d0c6e28129d576e989607 (MD5) Previous issue date: 2013application/pdfesspaLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)Traffic matrixNetwork-wide traffic monitoringModeling and estimationOptimal volume anomaly detection and localizationProactive traffic managementRobust routingDynamic load balancingReactive robust load balancingQuality of serviceMatriz de tráficoMonitoreo de tráficoModelado y estimación de la matriz de tráficoDetección y localización óptimas de anomalías de volumenIngeniería de tráficoCalidad de servicioEnrutamiento robustoAnálisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicioTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaCasas, PedroVaton, SandrineRubino, M.Universidad de la Republica (Uruguay). Facultad de IngenieriaMagíster en Ingeniería eléctricaTelecomunicacionesAnálisis de Redes, Tráfico y Estadísticas de ServiciosLICENSElicense.txttext/plain4244http://localhost:8080/xmlui/bitstream/20.500.12008/2893/5/license.txt528b6a3c8c7d0c6e28129d576e989607MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/2893/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/2893/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/2893/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALtesis_CASAS_udelar.pdfapplication/pdf3327498http://localhost:8080/xmlui/bitstream/20.500.12008/2893/1/tesis_CASAS_udelar.pdf81d5570f5215b774021a4ae27b552bfeMD5120.500.12008/28932024-07-25 15:18:58.648oai:colibri.udelar.edu.uy:20.500.12008/2893VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMNCg0KDQpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIA0KDQpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdO+/vXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGRlcO+/vXNpdG8gZW4gQ09MSUJSSSwgbGEgVW5pdmVyc2lkYWQgZGUgUmVw77+9YmxpY2EgcHJvY2VkZXLvv70gYTogIA0KDQphKSBhcmNoaXZhciBt77+9cyBkZSB1bmEgY29waWEgZGUgbGEgb2JyYSBlbiBsb3Mgc2Vydmlkb3JlcyBkZSBsYSBVbml2ZXJzaWRhZCBhIGxvcyBlZmVjdG9zIGRlIGdhcmFudGl6YXIgYWNjZXNvLCBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNp77+9bg0KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nvv71uIHkgYWNjZXNpYmlsaWRhZCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8uDQpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuDQoNCg0KRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4NCg0KRWwgYXV0b3IgYXNlZ3VyYSBxdWUgbGEgb2JyYSBubyBpbmZyaWdlIG5pbmfvv71uIGRlcmVjaG8gc29icmUgdGVyY2Vyb3MsIHlhIHNlYSBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3Ryby4NCg0KRWwgYXV0b3IgZ2FyYW50aXphIHF1ZSBzaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgY3VhbGVzIG5vIHRpZW5lIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgeSBxdWUgZXNlIG1hdGVyaWFsIGN1eW9zIGRlcmVjaG9zIHNvbiBkZSB0ZXJjZXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZGVwb3NpdGFkbyBlbiBlbCBSZXBvc2l0b3Jpby4NCg0KRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuDQoNCkVsIGF1dG9yIHNlcu+/vSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcu+/vSByZXNwb25zYWJsZSBwb3IgbGFzIGV2ZW50dWFsZXMgdmlvbGFjaW9uZXMgYWwgZGVyZWNobyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZW4gcXVlIHB1ZWRhIGluY3VycmlyIGVsIGF1dG9yLg0KDQpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNp77+9biBkZSBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGxhIFVERUxBUiAgYWRvcHRhcu+/vSB0b2RhcyBsYXMgbWVkaWRhcyBuZWNlc2FyaWFzIHBhcmEgZXZpdGFyIGxhIGNvbnRpbnVhY2nvv71uIGRlIGRpY2hhIGluZnJhY2Np77+9biwgbGFzIHF1ZSBwb2Ry77+9biBpbmNsdWlyIGVsIHJldGlybyBkZWwgYWNjZXNvIGEgbG9zIGNvbnRlbmlkb3MgeS9vIG1ldGFkYXRvcyBkZWwgZG9jdW1lbnRvIHJlc3BlY3Rpdm8uDQoNCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoNCg0KDQpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLg0KDQpBdHJpYnVjae+/vW4g77+9IENvbXBhcnRpciBJZ3VhbCAoQ0MgLSBCeS1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgZGViZSBoYWNlcnNlIG1lZGlhbnRlIHVuYSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuDQoNCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuDQoNCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IENvbXBhcnRpciBJZ3VhbCAoQ0Mg77+9IEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjae+/vW4gZGUgbGFzIG9icmFzIGRlcml2YWRhcyBzZSBoYWdhIG1lZGlhbnRlIGxpY2VuY2lhIGlk77+9bnRpY2EgYSBsYSBkZSBsYSBvYnJhIG9yaWdpbmFsLCByZWNvbm9jaWVuZG8gYSBsb3MgYXV0b3Jlcy4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IFNpbiBEZXJpdmFkYXMgKENDIC0gQnktTkMtTkQpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSwgcGVybyBubyBzZSBwZXJtaXRlIGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzIHkgbm8gc2UgcGVybWl0ZSB1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBkZWJpZW5kbyByZWNvbm9jZXIgYWwgYXV0b3IuDQoNCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4NCg0KQ3VhbmRvIHNlIHNlbGVjY2lvbmUgdW5hIGxpY2VuY2lhIHF1ZSBoYWJpbGl0ZSB1c29zIGNvbWVyY2lhbGVzLCBlbCBkZXDvv71zaXRvIGRlYmVy77+9IHNlciBhY29tcGHvv71hZG8gZGVsIGF2YWwgZGVsIGplcmFyY2Egbe+/vXhpbW8gZGVsIFNlcnZpY2lvIGNvcnJlc3BvbmRpZW50ZS4NCg0KDQoNCg0KDQoNCg0KDQo=Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-08-13T03:01:05.185808COLIBRI - Universidad de la Repúblicafalse
spellingShingle Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio
Casas, Pedro
Traffic matrix
Network-wide traffic monitoring
Modeling and estimation
Optimal volume anomaly detection and localization
Proactive traffic management
Robust routing
Dynamic load balancing
Reactive robust load balancing
Quality of service
Matriz de tráfico
Monitoreo de tráfico
Modelado y estimación de la matriz de tráfico
Detección y localización óptimas de anomalías de volumen
Ingeniería de tráfico
Calidad de servicio
Enrutamiento robusto
status_str acceptedVersion
title Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio
title_full Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio
title_fullStr Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio
title_full_unstemmed Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio
title_short Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio
title_sort Análisis estadístico del tráfico de red para la detección de anomalías y la calidad del servicio
topic Traffic matrix
Network-wide traffic monitoring
Modeling and estimation
Optimal volume anomaly detection and localization
Proactive traffic management
Robust routing
Dynamic load balancing
Reactive robust load balancing
Quality of service
Matriz de tráfico
Monitoreo de tráfico
Modelado y estimación de la matriz de tráfico
Detección y localización óptimas de anomalías de volumen
Ingeniería de tráfico
Calidad de servicio
Enrutamiento robusto
url http://hdl.handle.net/20.500.12008/2893