Noise reduction in analog tape audio recordings with deep learning models.

Irigaray, Ignacio - Rocamora, Martín - Biscainho, Luiz W. P.

Resumen:

This work addresses the problem of noise reduction in tape recordings using a deep-learning approach. First, we build a data set of audio snippets of tape noise extracted from different functional tape equipment—comprising open reel and cassette. Then, we adapt and train an existing deep-learning architecture originally proposed to remove noise from 78 RPM gramophone records. The model learns from mixtures of the noise snippets with clean audio excerpts at different SNRs. Experimental results validate the approach, showing the benefits of using real tape recording noise in training the model. Furthermore, the data set of tape noise snippets and the trained deep-learning models are publicly available. In this way, we encourage the collective improvement of the data set and the broad application of the denoising approach by sound archives.


Detalles Bibliográficos
2023
Noise reduction
Audio tape
Deep learning
Inglés
Universidad de la República
COLIBRI
https://www.aes.org/e-lib/browse.cfm?elib=22138
https://hdl.handle.net/20.500.12008/39637
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522932898922496
author Irigaray, Ignacio
author2 Rocamora, Martín
Biscainho, Luiz W. P.
author2_role author
author
author_facet Irigaray, Ignacio
Rocamora, Martín
Biscainho, Luiz W. P.
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
1df05be915d5c44b48b8b2e7a082b91a
1996b8461bc290aef6a27d78c67b6b52
56517b518f2c37afe5f8c300e9036aa7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/39637/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/39637/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/39637/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/39637/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/39637/1/IRB23.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Irigaray Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.
Rocamora Martín, Universidad de la República (Uruguay). Facultad de Ingeniería.
Biscainho Luiz W. P., Universidad Federal de Río de Janeiro, Brasil
dc.creator.none.fl_str_mv Irigaray, Ignacio
Rocamora, Martín
Biscainho, Luiz W. P.
dc.date.accessioned.none.fl_str_mv 2023-08-23T22:04:18Z
dc.date.available.none.fl_str_mv 2023-08-23T22:04:18Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv This work addresses the problem of noise reduction in tape recordings using a deep-learning approach. First, we build a data set of audio snippets of tape noise extracted from different functional tape equipment—comprising open reel and cassette. Then, we adapt and train an existing deep-learning architecture originally proposed to remove noise from 78 RPM gramophone records. The model learns from mixtures of the noise snippets with clean audio excerpts at different SNRs. Experimental results validate the approach, showing the benefits of using real tape recording noise in training the model. Furthermore, the data set of tape noise snippets and the trained deep-learning models are publicly available. In this way, we encourage the collective improvement of the data set and the broad application of the denoising approach by sound archives.
dc.description.es.fl_txt_mv Agradecemos al Centro Nacional de Documentación Musical (Montevideo, Uruguay) por su apoyo.
dc.format.extent.es.fl_str_mv 6 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Irigaray, I. Rocamora, M. y Biscainho, L. Noise reduction in analog tape audio recordings with deep learning models [en línea]. EN: AES 2023 International Conference on Audio Archiving, Preservation & Restoration, Culpeper, VA, USA, 1-3 jun. 2023, p. 1-6.
dc.identifier.uri.none.fl_str_mv https://www.aes.org/e-lib/browse.cfm?elib=22138
https://hdl.handle.net/20.500.12008/39637
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Audio Engineering Society
dc.relation.ispartof.es.fl_str_mv AES 2023 International Conference on Audio Archiving, Preservation & Restoration, Culpeper, VA, USA, 1-3 jun 2023, pp 1-6
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Noise reduction
Audio tape
Deep learning
dc.title.none.fl_str_mv Noise reduction in analog tape audio recordings with deep learning models.
dc.type.es.fl_str_mv Ponencia
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Agradecemos al Centro Nacional de Documentación Musical (Montevideo, Uruguay) por su apoyo.
eu_rights_str_mv openAccess
format conferenceObject
id COLIBRI_23270692b0c974e8c2e04d0e9c3b1fa2
identifier_str_mv Irigaray, I. Rocamora, M. y Biscainho, L. Noise reduction in analog tape audio recordings with deep learning models [en línea]. EN: AES 2023 International Conference on Audio Archiving, Preservation & Restoration, Culpeper, VA, USA, 1-3 jun. 2023, p. 1-6.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/39637
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Irigaray Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.Rocamora Martín, Universidad de la República (Uruguay). Facultad de Ingeniería.Biscainho Luiz W. P., Universidad Federal de Río de Janeiro, Brasil2023-08-23T22:04:18Z2023-08-23T22:04:18Z2023Irigaray, I. Rocamora, M. y Biscainho, L. Noise reduction in analog tape audio recordings with deep learning models [en línea]. EN: AES 2023 International Conference on Audio Archiving, Preservation & Restoration, Culpeper, VA, USA, 1-3 jun. 2023, p. 1-6.https://www.aes.org/e-lib/browse.cfm?elib=22138https://hdl.handle.net/20.500.12008/39637Agradecemos al Centro Nacional de Documentación Musical (Montevideo, Uruguay) por su apoyo.This work addresses the problem of noise reduction in tape recordings using a deep-learning approach. First, we build a data set of audio snippets of tape noise extracted from different functional tape equipment—comprising open reel and cassette. Then, we adapt and train an existing deep-learning architecture originally proposed to remove noise from 78 RPM gramophone records. The model learns from mixtures of the noise snippets with clean audio excerpts at different SNRs. Experimental results validate the approach, showing the benefits of using real tape recording noise in training the model. Furthermore, the data set of tape noise snippets and the trained deep-learning models are publicly available. In this way, we encourage the collective improvement of the data set and the broad application of the denoising approach by sound archives.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-08-23T18:58:49Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) IRB23.pdf: 714174 bytes, checksum: 56517b518f2c37afe5f8c300e9036aa7 (MD5)Approved for entry into archive by Berón Cecilia (cberon@fing.edu.uy) on 2023-08-23T19:44:52Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) IRB23.pdf: 714174 bytes, checksum: 56517b518f2c37afe5f8c300e9036aa7 (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2023-08-23T22:04:18Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) IRB23.pdf: 714174 bytes, checksum: 56517b518f2c37afe5f8c300e9036aa7 (MD5) Previous issue date: 20236 p.application/pdfenengAudio Engineering SocietyAES 2023 International Conference on Audio Archiving, Preservation & Restoration, Culpeper, VA, USA, 1-3 jun 2023, pp 1-6Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Noise reductionAudio tapeDeep learningNoise reduction in analog tape audio recordings with deep learning models.Ponenciainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaIrigaray, IgnacioRocamora, MartínBiscainho, Luiz W. P.LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/39637/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/39637/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838767http://localhost:8080/xmlui/bitstream/20.500.12008/39637/3/license_text1df05be915d5c44b48b8b2e7a082b91aMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/39637/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALIRB23.pdfIRB23.pdfapplication/pdf714174http://localhost:8080/xmlui/bitstream/20.500.12008/39637/1/IRB23.pdf56517b518f2c37afe5f8c300e9036aa7MD5120.500.12008/396372023-08-23 19:04:18.771oai:colibri.udelar.edu.uy:20.500.12008/39637VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:21.128451COLIBRI - Universidad de la Repúblicafalse
spellingShingle Noise reduction in analog tape audio recordings with deep learning models.
Irigaray, Ignacio
Noise reduction
Audio tape
Deep learning
status_str publishedVersion
title Noise reduction in analog tape audio recordings with deep learning models.
title_full Noise reduction in analog tape audio recordings with deep learning models.
title_fullStr Noise reduction in analog tape audio recordings with deep learning models.
title_full_unstemmed Noise reduction in analog tape audio recordings with deep learning models.
title_short Noise reduction in analog tape audio recordings with deep learning models.
title_sort Noise reduction in analog tape audio recordings with deep learning models.
topic Noise reduction
Audio tape
Deep learning
url https://www.aes.org/e-lib/browse.cfm?elib=22138
https://hdl.handle.net/20.500.12008/39637