Estimation of surface area
Resumen:
We study the problem of estimating the surface area of the boundary ∂S of a sufficiently smooth set S ⊂ Rd when the available information is only a finite subset Xn ⊂ S. We propose two estimators. The first makes use of the Devroye–Wise support estimator and is based on Crofton’s formula, which, roughly speaking, states that the (d − 1)-dimensional surface area of a smooth enough set is the mean number of intersections of randomly chosen lines. For that purpose, we propose an estimator of the number of intersections of such lines with support based on the Devroye Wise support estimators. The second surface area estimator makes use of the α-convex hull of Xn, which is denoted by Cα(Xn). More precisely, it is the (d−1)-dimensional surface area of Cα(Xn), as denoted by |Cα(Xn)|d−1, which is proven to converge to the (d − 1)-dimensional surface area of ∂S. Moreover, |Cα(Xn)|d−1 can be computed using Crofton’s formula. Our results depend on the Hausdorff distance between S and Xn for the Devroye–Wise estimator, and the Hausdorff distance between ∂S and ∂Cα(Xn) for the second estimator.
2022 | |
ANII: FCE_1_2019_1_156054 | |
Crofton’s formula Surface estimation α-convex hull Devroye–Wise estimator |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/37375 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
_version_ | 1807522795382374400 |
---|---|
author | Aaron, Catherine |
author2 | Cholaquidis, Alejandro Fraiman, Ricardo |
author2_role | author author |
author_facet | Aaron, Catherine Cholaquidis, Alejandro Fraiman, Ricardo |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a0ebbeafb9d2ec7cbb19d7137ebc392c 2fc523bba4df4b71d4fa008ef2dea84b 9fdbed07f52437945402c4e70fa4773e 0a32f25f3c086d6979f2c9e229c069ca |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/37375/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/37375/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/37375/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/37375/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/37375/1/10.1214_22-EJS2031.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Aaron Catherine, Université Clermont Auvergne Cholaquidis Alejandro, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática. Fraiman Ricardo, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática. |
dc.creator.none.fl_str_mv | Aaron, Catherine Cholaquidis, Alejandro Fraiman, Ricardo |
dc.date.accessioned.none.fl_str_mv | 2023-06-02T14:26:31Z |
dc.date.available.none.fl_str_mv | 2023-06-02T14:26:31Z |
dc.date.issued.none.fl_str_mv | 2022 |
dc.description.abstract.none.fl_txt_mv | We study the problem of estimating the surface area of the boundary ∂S of a sufficiently smooth set S ⊂ Rd when the available information is only a finite subset Xn ⊂ S. We propose two estimators. The first makes use of the Devroye–Wise support estimator and is based on Crofton’s formula, which, roughly speaking, states that the (d − 1)-dimensional surface area of a smooth enough set is the mean number of intersections of randomly chosen lines. For that purpose, we propose an estimator of the number of intersections of such lines with support based on the Devroye Wise support estimators. The second surface area estimator makes use of the α-convex hull of Xn, which is denoted by Cα(Xn). More precisely, it is the (d−1)-dimensional surface area of Cα(Xn), as denoted by |Cα(Xn)|d−1, which is proven to converge to the (d − 1)-dimensional surface area of ∂S. Moreover, |Cα(Xn)|d−1 can be computed using Crofton’s formula. Our results depend on the Hausdorff distance between S and Xn for the Devroye–Wise estimator, and the Hausdorff distance between ∂S and ∂Cα(Xn) for the second estimator. |
dc.description.sponsorship.none.fl_txt_mv | ANII: FCE_1_2019_1_156054 |
dc.format.extent.es.fl_str_mv | 38 h |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Aaron, C, Cholaquidis, A y Fraiman, R. "Estimation of surface area". Electronic Journal of Statistics. [en línea] 2022, 16: 3751–3788. 38 h. |
dc.identifier.doi.none.fl_str_mv | 10.1214/22-EJS2031 |
dc.identifier.issn.none.fl_str_mv | 1935-7524 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/37375 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | Institute of Mathematical Statistics |
dc.relation.ispartof.es.fl_str_mv | Electronic Journal of Statistics, 2022, 16: 3751–3788 |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Crofton’s formula Surface estimation α-convex hull Devroye–Wise estimator |
dc.title.none.fl_str_mv | Estimation of surface area |
dc.type.es.fl_str_mv | Artículo |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | We study the problem of estimating the surface area of the boundary ∂S of a sufficiently smooth set S ⊂ Rd when the available information is only a finite subset Xn ⊂ S. We propose two estimators. The first makes use of the Devroye–Wise support estimator and is based on Crofton’s formula, which, roughly speaking, states that the (d − 1)-dimensional surface area of a smooth enough set is the mean number of intersections of randomly chosen lines. For that purpose, we propose an estimator of the number of intersections of such lines with support based on the Devroye Wise support estimators. The second surface area estimator makes use of the α-convex hull of Xn, which is denoted by Cα(Xn). More precisely, it is the (d−1)-dimensional surface area of Cα(Xn), as denoted by |Cα(Xn)|d−1, which is proven to converge to the (d − 1)-dimensional surface area of ∂S. Moreover, |Cα(Xn)|d−1 can be computed using Crofton’s formula. Our results depend on the Hausdorff distance between S and Xn for the Devroye–Wise estimator, and the Hausdorff distance between ∂S and ∂Cα(Xn) for the second estimator. |
eu_rights_str_mv | openAccess |
format | article |
id | COLIBRI_2248e5340f8ea10314fcc57b15d79a2a |
identifier_str_mv | Aaron, C, Cholaquidis, A y Fraiman, R. "Estimation of surface area". Electronic Journal of Statistics. [en línea] 2022, 16: 3751–3788. 38 h. 1935-7524 10.1214/22-EJS2031 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/37375 |
publishDate | 2022 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
spelling | Aaron Catherine, Université Clermont AuvergneCholaquidis Alejandro, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.Fraiman Ricardo, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.2023-06-02T14:26:31Z2023-06-02T14:26:31Z2022Aaron, C, Cholaquidis, A y Fraiman, R. "Estimation of surface area". Electronic Journal of Statistics. [en línea] 2022, 16: 3751–3788. 38 h.1935-7524https://hdl.handle.net/20.500.12008/3737510.1214/22-EJS2031We study the problem of estimating the surface area of the boundary ∂S of a sufficiently smooth set S ⊂ Rd when the available information is only a finite subset Xn ⊂ S. We propose two estimators. The first makes use of the Devroye–Wise support estimator and is based on Crofton’s formula, which, roughly speaking, states that the (d − 1)-dimensional surface area of a smooth enough set is the mean number of intersections of randomly chosen lines. For that purpose, we propose an estimator of the number of intersections of such lines with support based on the Devroye Wise support estimators. The second surface area estimator makes use of the α-convex hull of Xn, which is denoted by Cα(Xn). More precisely, it is the (d−1)-dimensional surface area of Cα(Xn), as denoted by |Cα(Xn)|d−1, which is proven to converge to the (d − 1)-dimensional surface area of ∂S. Moreover, |Cα(Xn)|d−1 can be computed using Crofton’s formula. Our results depend on the Hausdorff distance between S and Xn for the Devroye–Wise estimator, and the Hausdorff distance between ∂S and ∂Cα(Xn) for the second estimator.Submitted by Faget Cecilia (lfaget@fcien.edu.uy) on 2023-06-02T12:21:23Z No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 10.1214_22-EJS2031.pdf: 1174051 bytes, checksum: 0a32f25f3c086d6979f2c9e229c069ca (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2023-06-02T13:51:59Z (GMT) No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 10.1214_22-EJS2031.pdf: 1174051 bytes, checksum: 0a32f25f3c086d6979f2c9e229c069ca (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-06-02T14:26:31Z (GMT). No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 10.1214_22-EJS2031.pdf: 1174051 bytes, checksum: 0a32f25f3c086d6979f2c9e229c069ca (MD5) Previous issue date: 2022ANII: FCE_1_2019_1_15605438 happlication/pdfenengInstitute of Mathematical StatisticsElectronic Journal of Statistics, 2022, 16: 3751–3788Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)Crofton’s formulaSurface estimationα-convex hullDevroye–Wise estimatorEstimation of surface areaArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaAaron, CatherineCholaquidis, AlejandroFraiman, RicardoLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/37375/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/37375/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-838552http://localhost:8080/xmlui/bitstream/20.500.12008/37375/3/license_text2fc523bba4df4b71d4fa008ef2dea84bMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-819875http://localhost:8080/xmlui/bitstream/20.500.12008/37375/4/license_rdf9fdbed07f52437945402c4e70fa4773eMD54ORIGINAL10.1214_22-EJS2031.pdf10.1214_22-EJS2031.pdfapplication/pdf1174051http://localhost:8080/xmlui/bitstream/20.500.12008/37375/1/10.1214_22-EJS2031.pdf0a32f25f3c086d6979f2c9e229c069caMD5120.500.12008/373752023-06-02 11:26:31.914oai:colibri.udelar.edu.uy:20.500.12008/37375VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:28:56.122083COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Estimation of surface area Aaron, Catherine Crofton’s formula Surface estimation α-convex hull Devroye–Wise estimator |
status_str | publishedVersion |
title | Estimation of surface area |
title_full | Estimation of surface area |
title_fullStr | Estimation of surface area |
title_full_unstemmed | Estimation of surface area |
title_short | Estimation of surface area |
title_sort | Estimation of surface area |
topic | Crofton’s formula Surface estimation α-convex hull Devroye–Wise estimator |
url | https://hdl.handle.net/20.500.12008/37375 |