Estimation of surface area

Aaron, Catherine - Cholaquidis, Alejandro - Fraiman, Ricardo

Resumen:

We study the problem of estimating the surface area of the boundary ∂S of a sufficiently smooth set S ⊂ Rd when the available information is only a finite subset Xn ⊂ S. We propose two estimators. The first makes use of the Devroye–Wise support estimator and is based on Crofton’s formula, which, roughly speaking, states that the (d − 1)-dimensional surface area of a smooth enough set is the mean number of intersections of randomly chosen lines. For that purpose, we propose an estimator of the number of intersections of such lines with support based on the Devroye Wise support estimators. The second surface area estimator makes use of the α-convex hull of Xn, which is denoted by Cα(Xn). More precisely, it is the (d−1)-dimensional surface area of Cα(Xn), as denoted by |Cα(Xn)|d−1, which is proven to converge to the (d − 1)-dimensional surface area of ∂S. Moreover, |Cα(Xn)|d−1 can be computed using Crofton’s formula. Our results depend on the Hausdorff distance between S and Xn for the Devroye–Wise estimator, and the Hausdorff distance between ∂S and ∂Cα(Xn) for the second estimator.


Detalles Bibliográficos
2022
ANII: FCE_1_2019_1_156054
Crofton’s formula
Surface estimation
α-convex hull
Devroye–Wise estimator
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/37375
Acceso abierto
Licencia Creative Commons Atribución (CC - By 4.0)
_version_ 1807522795382374400
author Aaron, Catherine
author2 Cholaquidis, Alejandro
Fraiman, Ricardo
author2_role author
author
author_facet Aaron, Catherine
Cholaquidis, Alejandro
Fraiman, Ricardo
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a0ebbeafb9d2ec7cbb19d7137ebc392c
2fc523bba4df4b71d4fa008ef2dea84b
9fdbed07f52437945402c4e70fa4773e
0a32f25f3c086d6979f2c9e229c069ca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/37375/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/37375/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/37375/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/37375/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/37375/1/10.1214_22-EJS2031.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Aaron Catherine, Université Clermont Auvergne
Cholaquidis Alejandro, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.
Fraiman Ricardo, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.
dc.creator.none.fl_str_mv Aaron, Catherine
Cholaquidis, Alejandro
Fraiman, Ricardo
dc.date.accessioned.none.fl_str_mv 2023-06-02T14:26:31Z
dc.date.available.none.fl_str_mv 2023-06-02T14:26:31Z
dc.date.issued.none.fl_str_mv 2022
dc.description.abstract.none.fl_txt_mv We study the problem of estimating the surface area of the boundary ∂S of a sufficiently smooth set S ⊂ Rd when the available information is only a finite subset Xn ⊂ S. We propose two estimators. The first makes use of the Devroye–Wise support estimator and is based on Crofton’s formula, which, roughly speaking, states that the (d − 1)-dimensional surface area of a smooth enough set is the mean number of intersections of randomly chosen lines. For that purpose, we propose an estimator of the number of intersections of such lines with support based on the Devroye Wise support estimators. The second surface area estimator makes use of the α-convex hull of Xn, which is denoted by Cα(Xn). More precisely, it is the (d−1)-dimensional surface area of Cα(Xn), as denoted by |Cα(Xn)|d−1, which is proven to converge to the (d − 1)-dimensional surface area of ∂S. Moreover, |Cα(Xn)|d−1 can be computed using Crofton’s formula. Our results depend on the Hausdorff distance between S and Xn for the Devroye–Wise estimator, and the Hausdorff distance between ∂S and ∂Cα(Xn) for the second estimator.
dc.description.sponsorship.none.fl_txt_mv ANII: FCE_1_2019_1_156054
dc.format.extent.es.fl_str_mv 38 h
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Aaron, C, Cholaquidis, A y Fraiman, R. "Estimation of surface area". Electronic Journal of Statistics. [en línea] 2022, 16: 3751–3788. 38 h.
dc.identifier.doi.none.fl_str_mv 10.1214/22-EJS2031
dc.identifier.issn.none.fl_str_mv 1935-7524
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/37375
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Institute of Mathematical Statistics
dc.relation.ispartof.es.fl_str_mv Electronic Journal of Statistics, 2022, 16: 3751–3788
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Crofton’s formula
Surface estimation
α-convex hull
Devroye–Wise estimator
dc.title.none.fl_str_mv Estimation of surface area
dc.type.es.fl_str_mv Artículo
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description We study the problem of estimating the surface area of the boundary ∂S of a sufficiently smooth set S ⊂ Rd when the available information is only a finite subset Xn ⊂ S. We propose two estimators. The first makes use of the Devroye–Wise support estimator and is based on Crofton’s formula, which, roughly speaking, states that the (d − 1)-dimensional surface area of a smooth enough set is the mean number of intersections of randomly chosen lines. For that purpose, we propose an estimator of the number of intersections of such lines with support based on the Devroye Wise support estimators. The second surface area estimator makes use of the α-convex hull of Xn, which is denoted by Cα(Xn). More precisely, it is the (d−1)-dimensional surface area of Cα(Xn), as denoted by |Cα(Xn)|d−1, which is proven to converge to the (d − 1)-dimensional surface area of ∂S. Moreover, |Cα(Xn)|d−1 can be computed using Crofton’s formula. Our results depend on the Hausdorff distance between S and Xn for the Devroye–Wise estimator, and the Hausdorff distance between ∂S and ∂Cα(Xn) for the second estimator.
eu_rights_str_mv openAccess
format article
id COLIBRI_2248e5340f8ea10314fcc57b15d79a2a
identifier_str_mv Aaron, C, Cholaquidis, A y Fraiman, R. "Estimation of surface area". Electronic Journal of Statistics. [en línea] 2022, 16: 3751–3788. 38 h.
1935-7524
10.1214/22-EJS2031
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/37375
publishDate 2022
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
spelling Aaron Catherine, Université Clermont AuvergneCholaquidis Alejandro, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.Fraiman Ricardo, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.2023-06-02T14:26:31Z2023-06-02T14:26:31Z2022Aaron, C, Cholaquidis, A y Fraiman, R. "Estimation of surface area". Electronic Journal of Statistics. [en línea] 2022, 16: 3751–3788. 38 h.1935-7524https://hdl.handle.net/20.500.12008/3737510.1214/22-EJS2031We study the problem of estimating the surface area of the boundary ∂S of a sufficiently smooth set S ⊂ Rd when the available information is only a finite subset Xn ⊂ S. We propose two estimators. The first makes use of the Devroye–Wise support estimator and is based on Crofton’s formula, which, roughly speaking, states that the (d − 1)-dimensional surface area of a smooth enough set is the mean number of intersections of randomly chosen lines. For that purpose, we propose an estimator of the number of intersections of such lines with support based on the Devroye Wise support estimators. The second surface area estimator makes use of the α-convex hull of Xn, which is denoted by Cα(Xn). More precisely, it is the (d−1)-dimensional surface area of Cα(Xn), as denoted by |Cα(Xn)|d−1, which is proven to converge to the (d − 1)-dimensional surface area of ∂S. Moreover, |Cα(Xn)|d−1 can be computed using Crofton’s formula. Our results depend on the Hausdorff distance between S and Xn for the Devroye–Wise estimator, and the Hausdorff distance between ∂S and ∂Cα(Xn) for the second estimator.Submitted by Faget Cecilia (lfaget@fcien.edu.uy) on 2023-06-02T12:21:23Z No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 10.1214_22-EJS2031.pdf: 1174051 bytes, checksum: 0a32f25f3c086d6979f2c9e229c069ca (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2023-06-02T13:51:59Z (GMT) No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 10.1214_22-EJS2031.pdf: 1174051 bytes, checksum: 0a32f25f3c086d6979f2c9e229c069ca (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-06-02T14:26:31Z (GMT). No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 10.1214_22-EJS2031.pdf: 1174051 bytes, checksum: 0a32f25f3c086d6979f2c9e229c069ca (MD5) Previous issue date: 2022ANII: FCE_1_2019_1_15605438 happlication/pdfenengInstitute of Mathematical StatisticsElectronic Journal of Statistics, 2022, 16: 3751–3788Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)Crofton’s formulaSurface estimationα-convex hullDevroye–Wise estimatorEstimation of surface areaArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaAaron, CatherineCholaquidis, AlejandroFraiman, RicardoLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/37375/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/37375/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-838552http://localhost:8080/xmlui/bitstream/20.500.12008/37375/3/license_text2fc523bba4df4b71d4fa008ef2dea84bMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-819875http://localhost:8080/xmlui/bitstream/20.500.12008/37375/4/license_rdf9fdbed07f52437945402c4e70fa4773eMD54ORIGINAL10.1214_22-EJS2031.pdf10.1214_22-EJS2031.pdfapplication/pdf1174051http://localhost:8080/xmlui/bitstream/20.500.12008/37375/1/10.1214_22-EJS2031.pdf0a32f25f3c086d6979f2c9e229c069caMD5120.500.12008/373752023-06-02 11:26:31.914oai:colibri.udelar.edu.uy:20.500.12008/37375VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:28:56.122083COLIBRI - Universidad de la Repúblicafalse
spellingShingle Estimation of surface area
Aaron, Catherine
Crofton’s formula
Surface estimation
α-convex hull
Devroye–Wise estimator
status_str publishedVersion
title Estimation of surface area
title_full Estimation of surface area
title_fullStr Estimation of surface area
title_full_unstemmed Estimation of surface area
title_short Estimation of surface area
title_sort Estimation of surface area
topic Crofton’s formula
Surface estimation
α-convex hull
Devroye–Wise estimator
url https://hdl.handle.net/20.500.12008/37375