Optimal and linear F-measure classifiers applied to non-technical losses detection
Resumen:
Non-technical loss detection represents a very high cost to power supply companies. Finding classifiers that can deal with this problem is not easy as they have to face a high imbalance scenario with noisy data. In this paper we propose to use Optimal F-measure Classifier (OFC) and Linear F-measure Classifier (LFC), two novel algorithms that are designed to work in problems with unbalanced classes. We compare both algorithm performances with other previously used methods to solve automatic fraud detection problem.
2015 | |
Class imbalance One class SVM F-measure Fraud detection Level set method Procesamiento de Señales |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/42684 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
A new framework for optimal classifier design
Autor(es):: Di Martino, Matías
Fecha de publicación:: (2013) -
Semisupervised approach to non technical losses detection
Autor(es):: Tacón, Juan
Fecha de publicación:: (2014) -
Machine learning-assisted virtual patching of web applications
Autor(es):: Betarte, Gustavo
Fecha de publicación:: (2018) -
Improving web application firewalls through anomaly detection
Autor(es):: Betarte, Gustavo
Fecha de publicación:: (2018) -
Differences in the attitudes and beliefs about science of students in the physics-mathematics and life sciences areas and their impact on teaching
Autor(es):: Suárez, Álvaro
Fecha de publicación:: (2022)