Models for time series prediction based on neural networks. Case study : GLP sales prediction from ANCAP.

Paggi Straneo, Horacio

Supervisor(es): Robledo, Franco

Resumen:

A time series is a sequence of real values that can be considered as observations of a certain system. In this work, we are interested in time series coming from dynamical systems. Such systems can be sometimes described by a set of equations that model the underlying mechanism from where the samples come. However, in several real systems, those equations are unknown, and the only information available is a set of temporal measures, that constitute a time series. On the other hand, by practical reasons it is usually required to have a prediction, v.g. to know the (approximated) value of the series in a future instant t. The goal of this thesis is to solve one of such real-world prediction problem: given historical data related with the lique ed bottled propane gas sales, predict the future gas sales, as accurately as possible. This time series prediction problem is addressed by means of neural networks, using both (dynamic) reconstruction and prediction. The problem of to dynamically reconstruct the original system consists in building a model that captures certain characteristics of it in order to have a correspondence between the long-term behavior of the model and of the system. The networks design process is basically guided by three ingredients. The dimensionality of the problem is explored by our rst ingredient, the Takens-Mañé's theorem. By means of this theorem, the optimal dimension of the (neural) network input can be investigated. Our second ingredient is a strong theorem: neural networks with a single hidden layer are universal approximators. As the third ingredient, we faced the search of the optimal size of the hidden layer by means of genetic algorithms, used to suggest the number of hidden neurons that maximizes a target tness function (related with prediction errors). These algorithms are also used to nd the most in uential networks inputs in some cases. The determination of the hidden layer size is a central (and hard) problem in the determination of the network topology. This thesis includes a state of the art of neural networks design for time series prediction, including related topics such as dynamical systems, universal approximators, gradient-descent searches and variations, as well as meta-heuristics. The survey of the related literature is intended to be extensive, for both printed material and electronic format, in order to have a landscape of the main aspects for the state of the art in time series prediction using neural networks. The material found was sometimes extremely redundant (as in the case of the back-propagation algorithm and its improvements) and scarce in others (memory structures or estimation of the signal subspace dimension in the stochastic case). The surveyed literature includes classical research works ([27], [50], [52]) as well as more recent ones ([79] , [16] or [82]), which pretends to be another contribution of this thesis. Special attention is given to the available software tools for neural networks design and time series processing. After a review of the available software packages, the most promising computational tools for both approaches are discussed. As a result, a whole framework based on mature software tools was set and used. In order to work with such dynamical systems, software intended speci cally for the analysis and processing of time series was employed, and then chaotic series were part of our focus. Since not all randomness is attributable to chaos, in order to characterize the dynamical system generating the time series, an exploration of chaotic-stochastic systems is required, as well as network models to predict a time series associated to one of them. Here we pretend to show how the knowledge of the domain, something extensively treated in the bibliography, can be someway sophisticated (such as the Lyapunov's spectrum for a series or the embedding dimension). In order to model the dynamical system generated by the time series we used the state-space model, so the time series prediction was translated in the prediction of the next system state. This state-space model, together with the delays method (delayed coordinates) have practical importance for the development of this work, speci cally, the design of the input layer in some networks (multi-layer perceptrons - MLPs) and other parameters (taps in the TFLNs). Additionally, the rest of the network components where determined in many cases through procedures traditionally used in neural networks : genetic algorithms. The criteria of model (network) selection are discussed and a trade-o between performance and network complexity is further explored, inspired in the Rissanen's minimum description length and its estimation given by the chosen software. Regarding the employed network models, the network topologies suggested from the literature as adequate for the prediction are used (TLFNs and recurrent networks) together with MLPs (a classic of arti cial neural networks) and networks committees. The e ectiveness of each method is con rmed for the proposed prediction problem. Network committees, where the predictions are a naive convex combination of predictions from individual networks, are also extensively used. The need of criteria to compare the behaviors of the model and of the real system, in the long run, for a dynamic stochastic systems, is presented and two alternatives are commented. The obtained results proof the existence of a solution to the problem of learning of the dependence Input ! Output . We also conjecture that the system is dynamic-stochastic but not chaotic, because we only have a realization of the random process corresponding to the sales. As a non-chaotic system, the mean of the predictions of the sales would improve as the available data increase, although the probability of a prediction with a big error is always non-null due to the randomness present. This solution is found in a constructive and exhaustive way. The exhaustiveness can be deduced from the next ve statements: the design of a neural network requires knowing the input and output dimension,the number of the hidden layers and of the neurons in each of them. the use of the Takens-Mañé's theorem allows to derive the dimension of the input data by theorems such as the Kolmogorov's and Cybenko's ones the use of multi-layer perceptrons with only one hidden layer is justi ed so several of such models were tested the number of neurons in the hidden layer is determined many times heuristically using genetic algorithms a neuron in the output gives the desired prediction As we said, two tasks are carried out: the development of a time series prediction model and the analysis of a feasible model for the dynamic reconstruction of the system. With the best predictive model, obtained by an ensemble of two networks, an acceptable average error was obtained when the week to be predicted is not adjacent to the training set (7.04% for the week 46/2011). We believe that these results are acceptable provided the quantity of information available, and represent an additional validation that neural networks are useful for time series prediction coming from dynamical systems, no matter whether they are stochastic or not. Finally, the results con rmed several already known facts (such as that adding noise to the inputs and outputs of the training values can improve the results; that recurrent networks trained with the back-propagation algorithm don't have the problem of vanishing gradients in short periods and that the use of committees - which can be seen as a very basic of distributed arti cial intelligence - allows to improve signi cantly the predictions).


Una serie temporal es una secuencia de valores reales que pueden ser considerados como observaciones de un cierto sistema. En este trabajo, estamos interesados en series temporales provenientes de sistemas dinámicos. Tales sistemas pueden ser algunas veces descriptos por un conjunto de ecuaciones que modelan el mecanismo subyacente que genera las muestras. sin embargo, en muchos sistemas reales, esas ecuaciones son desconocidas, y la única información disponible es un conjunto de medidas en el tiempo, que constituyen la serie temporal. Por otra parte, por razones prácticas es generalmente requerida una predicción, es decir, conocer el valor (aproximado) de la serie en un instante futuro t. La meta de esta tesis es resolver un problema de predicción del mundo real: dados los datos históricos relacionados con las ventas de gas propano licuado, predecir las ventas futuras, tan aproximadamente como sea posible. Este problema de predicción de series temporales es abordado por medio de redes neuronales, tanto para la reconstrucción como para la predicción. El problema de reconstruir dinámicamente el sistema original consiste en construir un modelo que capture ciertas características de él de forma de tener una correspondencia entre el comportamiento a largo plazo del modelo y del sistema. El proceso de diseño de las redes es guiado básicamente por tres ingredientes. La dimensionalidad del problema es explorada por nuestro primer ingrediente, el teorema de Takens-Mañé. Por medio de este teorema, la dimensión óptima de la entrada de la red neuronal puede ser investigada. Nuestro segundo ingrediente es un teorema muy fuerte: las redes neuronales con una sola capa oculta son un aproximador universal. Como tercer ingrediente, encaramos la búsqueda del tamaño oculta de la capa oculta por medio de algoritmos genéticos, usados para sugerir el número de neuronas ocultas que maximizan una función objetivo (relacionada con los errores de predicción). Estos algoritmos se usan además para encontrar las entradas a la red que influyen más en la salida en algunos casos. La determinación del tamaño de la capa oculta es un problema central (y duro) en la determinación de la topología de la red. Esta tesis incluye un estado del arte del diseño de redes neuronales para la predicción de series temporales, incluyendo tópicos relacionados tales como sistemas dinámicos, aproximadores universales, búsquedas basadas en el gradiente y sus variaciones, así como meta-heurísticas. El relevamiento de la literatura relacionada busca ser extenso, para tanto el material impreso como para el que esta en formato electrónico, de forma de tener un panorama de los principales aspectos del estado del arte en la predicción de series temporales usando redes neuronales. El material hallado fue algunas veces extremadamente redundante (como en el caso del algoritmo de retropropagación y sus mejoras) y escaso en otros (estructuras de memoria o estimación de la dimensión del sub-espacio de señal en el caso estocástico). La literatura consultada incluye trabajos de investigación clásicos ( ([27], [50], [52])' así como de los más reciente ([79] , [16] or [82]). Se presta especial atención a las herramientas de software disponibles para el diseño de redes neuronales y el procesamiento de series temporales. Luego de una revisión de los paquetes de software disponibles, las herramientas más promisiorias para ambas tareas son discutidas. Como resultado, un entorno de trabajo completo basado en herramientas de software maduras fue definido y usado. Para trabajar con los mencionados sistemas dinámicos, software especializado en el análisis y proceso de las series temporales fue empleado, y entonces las series caóticas fueron estudiadas. Ya que no toda la aleatoriedad es atribuible al caos, para caracterizar al sistema dinámico que genera la serie temporal se requiere una exploración de los sistemas caóticos-estocásticos, así como de los modelos de red para predecir una serie temporal asociada a uno de ellos. Aquí se pretende mostrar cómo el conocimiento del dominio, algo extensamente tratado en la literatura, puede ser de alguna manera sofisticado (tal como el espectro de Lyapunov de la serie o la dimensión del sub-espacio de señal). Para modelar el sistema dinámico generado por la serie temporal se usa el modelo de espacio de estados, por lo que la predicción de la serie temporal es traducida en la predicción del siguiente estado del sistema. Este modelo de espacio de estados, junto con el método de los delays (coordenadas demoradas) tiene importancia práctica en el desarrollo de este trabajo, específicamente, en el diseño de la capa de entrada en algunas redes (los perceptrones multicapa) y otros parámetros (los taps de las redes TLFN). Adicionalmente, el resto de los componentes de la red con determinados en varios casos a través de procedimientos tradicionalmente usados en las redes neuronales: los algoritmos genéticos. Los criterios para la selección de modelo (red) son discutidos y un balance entre performance y complejidad de la red es explorado luego, inspirado en el minimum description length de Rissanen y su estimación dada por el software elegido. Con respecto a los modelos de red empleados, las topologóas de sugeridas en la literatura como adecuadas para la predicción son usadas (TLFNs y redes recurrentes) junto con perceptrones multicapa (un clásico de las redes neuronales) y comités de redes. La efectividad de cada método es confirmada por el problema de predicción propuesto. Los comités de redes, donde las predicciones son una combinación convexa de las predicciones dadas por las redes individuales, son también usados extensamente. La necesidad de criterios para comparar el comportamiento del modelo con el del sistema real, a largo plazo, para un sistema dinámico estocástico, es presentada y dos alternativas son comentadas. Los resultados obtenidos prueban la existencia de una solución al problema del aprendizaje de la dependencia Entrada - Salida . Conjeturamos además que el sistema generador de serie de las ventas es dinámico-estocástico pero no caótico, ya que sólo tenemos una realización del proceso aleatorio correspondiente a las ventas. Al ser un sistema no caótico, la media de las predicciones de las ventas debería mejorar a medida que los datos disponibles aumentan, aunque la probabilidad de una predicción con un gran error es siempre no nula debido a la aleatoriedad presente. Esta solución es encontrada en una forma constructiva y exhaustiva. La exhaustividad puede deducirse de las siguiente cinco afirmaciones : el diseño de una red neuronal requiere conocer la dimensión de la entrada y de la salida, el número de capas ocultas y las neuronas en cada una de ellas el uso del teorema de takens-Mañé permite derivar la dimensión de la entrada por teoremas tales como los de Kolmogorov y Cybenko el uso de perceptrones con solo una capa oculta es justificado, por lo que varios de tales modelos son probados el número de neuronas en la capa oculta es determinada varias veces heurísticamente a través de algoritmos genéticos una sola neurona de salida da la predicción deseada. Como se dijo, dos tareas son llevadas a cabo: el desarrollo de un modelo para la predicción de la serie temporal y el análisis de un modelo factible para la reconstrucción dinámica del sistema. Con el mejor modelo predictivo, obtenido por el comité de dos redes se logró obtener un error aceptable en la predicción de una semana no contigua al conjunto de entrenamiento (7.04% para la semana 46/2011). Creemos que este es un resultado aceptable dada la cantidad de información disponible y representa una validación adicional de que las redes neuronales son útiles para la predicción de series temporales provenientes de sistemas dinámicos, sin importar si son estocásticos o no. Finalmente, los resultados experimentales confirmaron algunos hechos ya conocidos (tales como que agregar ruido a los datos de entrada y de salida de los valores de entrenamiento puede mejorar los resultados: que las redes recurrentes entrenadas con el algoritmo de retropropagación no presentan el problema del gradiente evanescente en periodos cortos y que el uso de de comités - que puede ser visto como una forma muy básica de inteligencia artificial distribuida - permite mejorar significativamente las predicciones).


Detalles Bibliográficos
2013
REDES NEURONALES
SERIES TEMPORALES
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/24169
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523175579254784
author Paggi Straneo, Horacio
author_facet Paggi Straneo, Horacio
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
d77747f0b79dbc4c411d2260a3d95cd2
1996b8461bc290aef6a27d78c67b6b52
6e066f05adc11acecb862159c6711772
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/24169/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/24169/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/24169/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/24169/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/24169/1/Pag13.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Paggi Straneo Horacio, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.coverage.spatial.es.fl_str_mv Uruguay
dc.creator.advisor.none.fl_str_mv Robledo, Franco
dc.creator.none.fl_str_mv Paggi Straneo, Horacio
dc.date.accessioned.none.fl_str_mv 2020-06-01T20:04:58Z
dc.date.available.none.fl_str_mv 2020-06-01T20:04:58Z
dc.date.issued.none.fl_str_mv 2013
dc.description.abstract.none.fl_txt_mv A time series is a sequence of real values that can be considered as observations of a certain system. In this work, we are interested in time series coming from dynamical systems. Such systems can be sometimes described by a set of equations that model the underlying mechanism from where the samples come. However, in several real systems, those equations are unknown, and the only information available is a set of temporal measures, that constitute a time series. On the other hand, by practical reasons it is usually required to have a prediction, v.g. to know the (approximated) value of the series in a future instant t. The goal of this thesis is to solve one of such real-world prediction problem: given historical data related with the lique ed bottled propane gas sales, predict the future gas sales, as accurately as possible. This time series prediction problem is addressed by means of neural networks, using both (dynamic) reconstruction and prediction. The problem of to dynamically reconstruct the original system consists in building a model that captures certain characteristics of it in order to have a correspondence between the long-term behavior of the model and of the system. The networks design process is basically guided by three ingredients. The dimensionality of the problem is explored by our rst ingredient, the Takens-Mañé's theorem. By means of this theorem, the optimal dimension of the (neural) network input can be investigated. Our second ingredient is a strong theorem: neural networks with a single hidden layer are universal approximators. As the third ingredient, we faced the search of the optimal size of the hidden layer by means of genetic algorithms, used to suggest the number of hidden neurons that maximizes a target tness function (related with prediction errors). These algorithms are also used to nd the most in uential networks inputs in some cases. The determination of the hidden layer size is a central (and hard) problem in the determination of the network topology. This thesis includes a state of the art of neural networks design for time series prediction, including related topics such as dynamical systems, universal approximators, gradient-descent searches and variations, as well as meta-heuristics. The survey of the related literature is intended to be extensive, for both printed material and electronic format, in order to have a landscape of the main aspects for the state of the art in time series prediction using neural networks. The material found was sometimes extremely redundant (as in the case of the back-propagation algorithm and its improvements) and scarce in others (memory structures or estimation of the signal subspace dimension in the stochastic case). The surveyed literature includes classical research works ([27], [50], [52]) as well as more recent ones ([79] , [16] or [82]), which pretends to be another contribution of this thesis. Special attention is given to the available software tools for neural networks design and time series processing. After a review of the available software packages, the most promising computational tools for both approaches are discussed. As a result, a whole framework based on mature software tools was set and used. In order to work with such dynamical systems, software intended speci cally for the analysis and processing of time series was employed, and then chaotic series were part of our focus. Since not all randomness is attributable to chaos, in order to characterize the dynamical system generating the time series, an exploration of chaotic-stochastic systems is required, as well as network models to predict a time series associated to one of them. Here we pretend to show how the knowledge of the domain, something extensively treated in the bibliography, can be someway sophisticated (such as the Lyapunov's spectrum for a series or the embedding dimension). In order to model the dynamical system generated by the time series we used the state-space model, so the time series prediction was translated in the prediction of the next system state. This state-space model, together with the delays method (delayed coordinates) have practical importance for the development of this work, speci cally, the design of the input layer in some networks (multi-layer perceptrons - MLPs) and other parameters (taps in the TFLNs). Additionally, the rest of the network components where determined in many cases through procedures traditionally used in neural networks : genetic algorithms. The criteria of model (network) selection are discussed and a trade-o between performance and network complexity is further explored, inspired in the Rissanen's minimum description length and its estimation given by the chosen software. Regarding the employed network models, the network topologies suggested from the literature as adequate for the prediction are used (TLFNs and recurrent networks) together with MLPs (a classic of arti cial neural networks) and networks committees. The e ectiveness of each method is con rmed for the proposed prediction problem. Network committees, where the predictions are a naive convex combination of predictions from individual networks, are also extensively used. The need of criteria to compare the behaviors of the model and of the real system, in the long run, for a dynamic stochastic systems, is presented and two alternatives are commented. The obtained results proof the existence of a solution to the problem of learning of the dependence Input ! Output . We also conjecture that the system is dynamic-stochastic but not chaotic, because we only have a realization of the random process corresponding to the sales. As a non-chaotic system, the mean of the predictions of the sales would improve as the available data increase, although the probability of a prediction with a big error is always non-null due to the randomness present. This solution is found in a constructive and exhaustive way. The exhaustiveness can be deduced from the next ve statements: the design of a neural network requires knowing the input and output dimension,the number of the hidden layers and of the neurons in each of them. the use of the Takens-Mañé's theorem allows to derive the dimension of the input data by theorems such as the Kolmogorov's and Cybenko's ones the use of multi-layer perceptrons with only one hidden layer is justi ed so several of such models were tested the number of neurons in the hidden layer is determined many times heuristically using genetic algorithms a neuron in the output gives the desired prediction As we said, two tasks are carried out: the development of a time series prediction model and the analysis of a feasible model for the dynamic reconstruction of the system. With the best predictive model, obtained by an ensemble of two networks, an acceptable average error was obtained when the week to be predicted is not adjacent to the training set (7.04% for the week 46/2011). We believe that these results are acceptable provided the quantity of information available, and represent an additional validation that neural networks are useful for time series prediction coming from dynamical systems, no matter whether they are stochastic or not. Finally, the results con rmed several already known facts (such as that adding noise to the inputs and outputs of the training values can improve the results; that recurrent networks trained with the back-propagation algorithm don't have the problem of vanishing gradients in short periods and that the use of committees - which can be seen as a very basic of distributed arti cial intelligence - allows to improve signi cantly the predictions).
Una serie temporal es una secuencia de valores reales que pueden ser considerados como observaciones de un cierto sistema. En este trabajo, estamos interesados en series temporales provenientes de sistemas dinámicos. Tales sistemas pueden ser algunas veces descriptos por un conjunto de ecuaciones que modelan el mecanismo subyacente que genera las muestras. sin embargo, en muchos sistemas reales, esas ecuaciones son desconocidas, y la única información disponible es un conjunto de medidas en el tiempo, que constituyen la serie temporal. Por otra parte, por razones prácticas es generalmente requerida una predicción, es decir, conocer el valor (aproximado) de la serie en un instante futuro t. La meta de esta tesis es resolver un problema de predicción del mundo real: dados los datos históricos relacionados con las ventas de gas propano licuado, predecir las ventas futuras, tan aproximadamente como sea posible. Este problema de predicción de series temporales es abordado por medio de redes neuronales, tanto para la reconstrucción como para la predicción. El problema de reconstruir dinámicamente el sistema original consiste en construir un modelo que capture ciertas características de él de forma de tener una correspondencia entre el comportamiento a largo plazo del modelo y del sistema. El proceso de diseño de las redes es guiado básicamente por tres ingredientes. La dimensionalidad del problema es explorada por nuestro primer ingrediente, el teorema de Takens-Mañé. Por medio de este teorema, la dimensión óptima de la entrada de la red neuronal puede ser investigada. Nuestro segundo ingrediente es un teorema muy fuerte: las redes neuronales con una sola capa oculta son un aproximador universal. Como tercer ingrediente, encaramos la búsqueda del tamaño oculta de la capa oculta por medio de algoritmos genéticos, usados para sugerir el número de neuronas ocultas que maximizan una función objetivo (relacionada con los errores de predicción). Estos algoritmos se usan además para encontrar las entradas a la red que influyen más en la salida en algunos casos. La determinación del tamaño de la capa oculta es un problema central (y duro) en la determinación de la topología de la red. Esta tesis incluye un estado del arte del diseño de redes neuronales para la predicción de series temporales, incluyendo tópicos relacionados tales como sistemas dinámicos, aproximadores universales, búsquedas basadas en el gradiente y sus variaciones, así como meta-heurísticas. El relevamiento de la literatura relacionada busca ser extenso, para tanto el material impreso como para el que esta en formato electrónico, de forma de tener un panorama de los principales aspectos del estado del arte en la predicción de series temporales usando redes neuronales. El material hallado fue algunas veces extremadamente redundante (como en el caso del algoritmo de retropropagación y sus mejoras) y escaso en otros (estructuras de memoria o estimación de la dimensión del sub-espacio de señal en el caso estocástico). La literatura consultada incluye trabajos de investigación clásicos ( ([27], [50], [52])' así como de los más reciente ([79] , [16] or [82]). Se presta especial atención a las herramientas de software disponibles para el diseño de redes neuronales y el procesamiento de series temporales. Luego de una revisión de los paquetes de software disponibles, las herramientas más promisiorias para ambas tareas son discutidas. Como resultado, un entorno de trabajo completo basado en herramientas de software maduras fue definido y usado. Para trabajar con los mencionados sistemas dinámicos, software especializado en el análisis y proceso de las series temporales fue empleado, y entonces las series caóticas fueron estudiadas. Ya que no toda la aleatoriedad es atribuible al caos, para caracterizar al sistema dinámico que genera la serie temporal se requiere una exploración de los sistemas caóticos-estocásticos, así como de los modelos de red para predecir una serie temporal asociada a uno de ellos. Aquí se pretende mostrar cómo el conocimiento del dominio, algo extensamente tratado en la literatura, puede ser de alguna manera sofisticado (tal como el espectro de Lyapunov de la serie o la dimensión del sub-espacio de señal). Para modelar el sistema dinámico generado por la serie temporal se usa el modelo de espacio de estados, por lo que la predicción de la serie temporal es traducida en la predicción del siguiente estado del sistema. Este modelo de espacio de estados, junto con el método de los delays (coordenadas demoradas) tiene importancia práctica en el desarrollo de este trabajo, específicamente, en el diseño de la capa de entrada en algunas redes (los perceptrones multicapa) y otros parámetros (los taps de las redes TLFN). Adicionalmente, el resto de los componentes de la red con determinados en varios casos a través de procedimientos tradicionalmente usados en las redes neuronales: los algoritmos genéticos. Los criterios para la selección de modelo (red) son discutidos y un balance entre performance y complejidad de la red es explorado luego, inspirado en el minimum description length de Rissanen y su estimación dada por el software elegido. Con respecto a los modelos de red empleados, las topologóas de sugeridas en la literatura como adecuadas para la predicción son usadas (TLFNs y redes recurrentes) junto con perceptrones multicapa (un clásico de las redes neuronales) y comités de redes. La efectividad de cada método es confirmada por el problema de predicción propuesto. Los comités de redes, donde las predicciones son una combinación convexa de las predicciones dadas por las redes individuales, son también usados extensamente. La necesidad de criterios para comparar el comportamiento del modelo con el del sistema real, a largo plazo, para un sistema dinámico estocástico, es presentada y dos alternativas son comentadas. Los resultados obtenidos prueban la existencia de una solución al problema del aprendizaje de la dependencia Entrada - Salida . Conjeturamos además que el sistema generador de serie de las ventas es dinámico-estocástico pero no caótico, ya que sólo tenemos una realización del proceso aleatorio correspondiente a las ventas. Al ser un sistema no caótico, la media de las predicciones de las ventas debería mejorar a medida que los datos disponibles aumentan, aunque la probabilidad de una predicción con un gran error es siempre no nula debido a la aleatoriedad presente. Esta solución es encontrada en una forma constructiva y exhaustiva. La exhaustividad puede deducirse de las siguiente cinco afirmaciones : el diseño de una red neuronal requiere conocer la dimensión de la entrada y de la salida, el número de capas ocultas y las neuronas en cada una de ellas el uso del teorema de takens-Mañé permite derivar la dimensión de la entrada por teoremas tales como los de Kolmogorov y Cybenko el uso de perceptrones con solo una capa oculta es justificado, por lo que varios de tales modelos son probados el número de neuronas en la capa oculta es determinada varias veces heurísticamente a través de algoritmos genéticos una sola neurona de salida da la predicción deseada. Como se dijo, dos tareas son llevadas a cabo: el desarrollo de un modelo para la predicción de la serie temporal y el análisis de un modelo factible para la reconstrucción dinámica del sistema. Con el mejor modelo predictivo, obtenido por el comité de dos redes se logró obtener un error aceptable en la predicción de una semana no contigua al conjunto de entrenamiento (7.04% para la semana 46/2011). Creemos que este es un resultado aceptable dada la cantidad de información disponible y representa una validación adicional de que las redes neuronales son útiles para la predicción de series temporales provenientes de sistemas dinámicos, sin importar si son estocásticos o no. Finalmente, los resultados experimentales confirmaron algunos hechos ya conocidos (tales como que agregar ruido a los datos de entrada y de salida de los valores de entrenamiento puede mejorar los resultados: que las redes recurrentes entrenadas con el algoritmo de retropropagación no presentan el problema del gradiente evanescente en periodos cortos y que el uso de de comités - que puede ser visto como una forma muy básica de inteligencia artificial distribuida - permite mejorar significativamente las predicciones).
dc.format.extent.es.fl_str_mv 269 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Paggi Straneo, H. Models for time series prediction based on neural networks. Case study : GLP sales prediction from ANCAP [en línea] Tesis de maestría. Montevideo : Udelar. FI, 2013.
dc.identifier.issn.none.fl_str_mv 1688-2792
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/24169
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Udelar.FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.other.es.fl_str_mv REDES NEURONALES
SERIES TEMPORALES
dc.title.none.fl_str_mv Models for time series prediction based on neural networks. Case study : GLP sales prediction from ANCAP.
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description A time series is a sequence of real values that can be considered as observations of a certain system. In this work, we are interested in time series coming from dynamical systems. Such systems can be sometimes described by a set of equations that model the underlying mechanism from where the samples come. However, in several real systems, those equations are unknown, and the only information available is a set of temporal measures, that constitute a time series. On the other hand, by practical reasons it is usually required to have a prediction, v.g. to know the (approximated) value of the series in a future instant t. The goal of this thesis is to solve one of such real-world prediction problem: given historical data related with the lique ed bottled propane gas sales, predict the future gas sales, as accurately as possible. This time series prediction problem is addressed by means of neural networks, using both (dynamic) reconstruction and prediction. The problem of to dynamically reconstruct the original system consists in building a model that captures certain characteristics of it in order to have a correspondence between the long-term behavior of the model and of the system. The networks design process is basically guided by three ingredients. The dimensionality of the problem is explored by our rst ingredient, the Takens-Mañé's theorem. By means of this theorem, the optimal dimension of the (neural) network input can be investigated. Our second ingredient is a strong theorem: neural networks with a single hidden layer are universal approximators. As the third ingredient, we faced the search of the optimal size of the hidden layer by means of genetic algorithms, used to suggest the number of hidden neurons that maximizes a target tness function (related with prediction errors). These algorithms are also used to nd the most in uential networks inputs in some cases. The determination of the hidden layer size is a central (and hard) problem in the determination of the network topology. This thesis includes a state of the art of neural networks design for time series prediction, including related topics such as dynamical systems, universal approximators, gradient-descent searches and variations, as well as meta-heuristics. The survey of the related literature is intended to be extensive, for both printed material and electronic format, in order to have a landscape of the main aspects for the state of the art in time series prediction using neural networks. The material found was sometimes extremely redundant (as in the case of the back-propagation algorithm and its improvements) and scarce in others (memory structures or estimation of the signal subspace dimension in the stochastic case). The surveyed literature includes classical research works ([27], [50], [52]) as well as more recent ones ([79] , [16] or [82]), which pretends to be another contribution of this thesis. Special attention is given to the available software tools for neural networks design and time series processing. After a review of the available software packages, the most promising computational tools for both approaches are discussed. As a result, a whole framework based on mature software tools was set and used. In order to work with such dynamical systems, software intended speci cally for the analysis and processing of time series was employed, and then chaotic series were part of our focus. Since not all randomness is attributable to chaos, in order to characterize the dynamical system generating the time series, an exploration of chaotic-stochastic systems is required, as well as network models to predict a time series associated to one of them. Here we pretend to show how the knowledge of the domain, something extensively treated in the bibliography, can be someway sophisticated (such as the Lyapunov's spectrum for a series or the embedding dimension). In order to model the dynamical system generated by the time series we used the state-space model, so the time series prediction was translated in the prediction of the next system state. This state-space model, together with the delays method (delayed coordinates) have practical importance for the development of this work, speci cally, the design of the input layer in some networks (multi-layer perceptrons - MLPs) and other parameters (taps in the TFLNs). Additionally, the rest of the network components where determined in many cases through procedures traditionally used in neural networks : genetic algorithms. The criteria of model (network) selection are discussed and a trade-o between performance and network complexity is further explored, inspired in the Rissanen's minimum description length and its estimation given by the chosen software. Regarding the employed network models, the network topologies suggested from the literature as adequate for the prediction are used (TLFNs and recurrent networks) together with MLPs (a classic of arti cial neural networks) and networks committees. The e ectiveness of each method is con rmed for the proposed prediction problem. Network committees, where the predictions are a naive convex combination of predictions from individual networks, are also extensively used. The need of criteria to compare the behaviors of the model and of the real system, in the long run, for a dynamic stochastic systems, is presented and two alternatives are commented. The obtained results proof the existence of a solution to the problem of learning of the dependence Input ! Output . We also conjecture that the system is dynamic-stochastic but not chaotic, because we only have a realization of the random process corresponding to the sales. As a non-chaotic system, the mean of the predictions of the sales would improve as the available data increase, although the probability of a prediction with a big error is always non-null due to the randomness present. This solution is found in a constructive and exhaustive way. The exhaustiveness can be deduced from the next ve statements: the design of a neural network requires knowing the input and output dimension,the number of the hidden layers and of the neurons in each of them. the use of the Takens-Mañé's theorem allows to derive the dimension of the input data by theorems such as the Kolmogorov's and Cybenko's ones the use of multi-layer perceptrons with only one hidden layer is justi ed so several of such models were tested the number of neurons in the hidden layer is determined many times heuristically using genetic algorithms a neuron in the output gives the desired prediction As we said, two tasks are carried out: the development of a time series prediction model and the analysis of a feasible model for the dynamic reconstruction of the system. With the best predictive model, obtained by an ensemble of two networks, an acceptable average error was obtained when the week to be predicted is not adjacent to the training set (7.04% for the week 46/2011). We believe that these results are acceptable provided the quantity of information available, and represent an additional validation that neural networks are useful for time series prediction coming from dynamical systems, no matter whether they are stochastic or not. Finally, the results con rmed several already known facts (such as that adding noise to the inputs and outputs of the training values can improve the results; that recurrent networks trained with the back-propagation algorithm don't have the problem of vanishing gradients in short periods and that the use of committees - which can be seen as a very basic of distributed arti cial intelligence - allows to improve signi cantly the predictions).
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_1feaf30ea51ab9e45351d0972a59e39c
identifier_str_mv Paggi Straneo, H. Models for time series prediction based on neural networks. Case study : GLP sales prediction from ANCAP [en línea] Tesis de maestría. Montevideo : Udelar. FI, 2013.
1688-2792
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/24169
publishDate 2013
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Paggi Straneo Horacio, Universidad de la República (Uruguay). Facultad de Ingeniería.Uruguay2020-06-01T20:04:58Z2020-06-01T20:04:58Z2013Paggi Straneo, H. Models for time series prediction based on neural networks. Case study : GLP sales prediction from ANCAP [en línea] Tesis de maestría. Montevideo : Udelar. FI, 2013.1688-2792https://hdl.handle.net/20.500.12008/24169A time series is a sequence of real values that can be considered as observations of a certain system. In this work, we are interested in time series coming from dynamical systems. Such systems can be sometimes described by a set of equations that model the underlying mechanism from where the samples come. However, in several real systems, those equations are unknown, and the only information available is a set of temporal measures, that constitute a time series. On the other hand, by practical reasons it is usually required to have a prediction, v.g. to know the (approximated) value of the series in a future instant t. The goal of this thesis is to solve one of such real-world prediction problem: given historical data related with the lique ed bottled propane gas sales, predict the future gas sales, as accurately as possible. This time series prediction problem is addressed by means of neural networks, using both (dynamic) reconstruction and prediction. The problem of to dynamically reconstruct the original system consists in building a model that captures certain characteristics of it in order to have a correspondence between the long-term behavior of the model and of the system. The networks design process is basically guided by three ingredients. The dimensionality of the problem is explored by our rst ingredient, the Takens-Mañé's theorem. By means of this theorem, the optimal dimension of the (neural) network input can be investigated. Our second ingredient is a strong theorem: neural networks with a single hidden layer are universal approximators. As the third ingredient, we faced the search of the optimal size of the hidden layer by means of genetic algorithms, used to suggest the number of hidden neurons that maximizes a target tness function (related with prediction errors). These algorithms are also used to nd the most in uential networks inputs in some cases. The determination of the hidden layer size is a central (and hard) problem in the determination of the network topology. This thesis includes a state of the art of neural networks design for time series prediction, including related topics such as dynamical systems, universal approximators, gradient-descent searches and variations, as well as meta-heuristics. The survey of the related literature is intended to be extensive, for both printed material and electronic format, in order to have a landscape of the main aspects for the state of the art in time series prediction using neural networks. The material found was sometimes extremely redundant (as in the case of the back-propagation algorithm and its improvements) and scarce in others (memory structures or estimation of the signal subspace dimension in the stochastic case). The surveyed literature includes classical research works ([27], [50], [52]) as well as more recent ones ([79] , [16] or [82]), which pretends to be another contribution of this thesis. Special attention is given to the available software tools for neural networks design and time series processing. After a review of the available software packages, the most promising computational tools for both approaches are discussed. As a result, a whole framework based on mature software tools was set and used. In order to work with such dynamical systems, software intended speci cally for the analysis and processing of time series was employed, and then chaotic series were part of our focus. Since not all randomness is attributable to chaos, in order to characterize the dynamical system generating the time series, an exploration of chaotic-stochastic systems is required, as well as network models to predict a time series associated to one of them. Here we pretend to show how the knowledge of the domain, something extensively treated in the bibliography, can be someway sophisticated (such as the Lyapunov's spectrum for a series or the embedding dimension). In order to model the dynamical system generated by the time series we used the state-space model, so the time series prediction was translated in the prediction of the next system state. This state-space model, together with the delays method (delayed coordinates) have practical importance for the development of this work, speci cally, the design of the input layer in some networks (multi-layer perceptrons - MLPs) and other parameters (taps in the TFLNs). Additionally, the rest of the network components where determined in many cases through procedures traditionally used in neural networks : genetic algorithms. The criteria of model (network) selection are discussed and a trade-o between performance and network complexity is further explored, inspired in the Rissanen's minimum description length and its estimation given by the chosen software. Regarding the employed network models, the network topologies suggested from the literature as adequate for the prediction are used (TLFNs and recurrent networks) together with MLPs (a classic of arti cial neural networks) and networks committees. The e ectiveness of each method is con rmed for the proposed prediction problem. Network committees, where the predictions are a naive convex combination of predictions from individual networks, are also extensively used. The need of criteria to compare the behaviors of the model and of the real system, in the long run, for a dynamic stochastic systems, is presented and two alternatives are commented. The obtained results proof the existence of a solution to the problem of learning of the dependence Input ! Output . We also conjecture that the system is dynamic-stochastic but not chaotic, because we only have a realization of the random process corresponding to the sales. As a non-chaotic system, the mean of the predictions of the sales would improve as the available data increase, although the probability of a prediction with a big error is always non-null due to the randomness present. This solution is found in a constructive and exhaustive way. The exhaustiveness can be deduced from the next ve statements: the design of a neural network requires knowing the input and output dimension,the number of the hidden layers and of the neurons in each of them. the use of the Takens-Mañé's theorem allows to derive the dimension of the input data by theorems such as the Kolmogorov's and Cybenko's ones the use of multi-layer perceptrons with only one hidden layer is justi ed so several of such models were tested the number of neurons in the hidden layer is determined many times heuristically using genetic algorithms a neuron in the output gives the desired prediction As we said, two tasks are carried out: the development of a time series prediction model and the analysis of a feasible model for the dynamic reconstruction of the system. With the best predictive model, obtained by an ensemble of two networks, an acceptable average error was obtained when the week to be predicted is not adjacent to the training set (7.04% for the week 46/2011). We believe that these results are acceptable provided the quantity of information available, and represent an additional validation that neural networks are useful for time series prediction coming from dynamical systems, no matter whether they are stochastic or not. Finally, the results con rmed several already known facts (such as that adding noise to the inputs and outputs of the training values can improve the results; that recurrent networks trained with the back-propagation algorithm don't have the problem of vanishing gradients in short periods and that the use of committees - which can be seen as a very basic of distributed arti cial intelligence - allows to improve signi cantly the predictions).Una serie temporal es una secuencia de valores reales que pueden ser considerados como observaciones de un cierto sistema. En este trabajo, estamos interesados en series temporales provenientes de sistemas dinámicos. Tales sistemas pueden ser algunas veces descriptos por un conjunto de ecuaciones que modelan el mecanismo subyacente que genera las muestras. sin embargo, en muchos sistemas reales, esas ecuaciones son desconocidas, y la única información disponible es un conjunto de medidas en el tiempo, que constituyen la serie temporal. Por otra parte, por razones prácticas es generalmente requerida una predicción, es decir, conocer el valor (aproximado) de la serie en un instante futuro t. La meta de esta tesis es resolver un problema de predicción del mundo real: dados los datos históricos relacionados con las ventas de gas propano licuado, predecir las ventas futuras, tan aproximadamente como sea posible. Este problema de predicción de series temporales es abordado por medio de redes neuronales, tanto para la reconstrucción como para la predicción. El problema de reconstruir dinámicamente el sistema original consiste en construir un modelo que capture ciertas características de él de forma de tener una correspondencia entre el comportamiento a largo plazo del modelo y del sistema. El proceso de diseño de las redes es guiado básicamente por tres ingredientes. La dimensionalidad del problema es explorada por nuestro primer ingrediente, el teorema de Takens-Mañé. Por medio de este teorema, la dimensión óptima de la entrada de la red neuronal puede ser investigada. Nuestro segundo ingrediente es un teorema muy fuerte: las redes neuronales con una sola capa oculta son un aproximador universal. Como tercer ingrediente, encaramos la búsqueda del tamaño oculta de la capa oculta por medio de algoritmos genéticos, usados para sugerir el número de neuronas ocultas que maximizan una función objetivo (relacionada con los errores de predicción). Estos algoritmos se usan además para encontrar las entradas a la red que influyen más en la salida en algunos casos. La determinación del tamaño de la capa oculta es un problema central (y duro) en la determinación de la topología de la red. Esta tesis incluye un estado del arte del diseño de redes neuronales para la predicción de series temporales, incluyendo tópicos relacionados tales como sistemas dinámicos, aproximadores universales, búsquedas basadas en el gradiente y sus variaciones, así como meta-heurísticas. El relevamiento de la literatura relacionada busca ser extenso, para tanto el material impreso como para el que esta en formato electrónico, de forma de tener un panorama de los principales aspectos del estado del arte en la predicción de series temporales usando redes neuronales. El material hallado fue algunas veces extremadamente redundante (como en el caso del algoritmo de retropropagación y sus mejoras) y escaso en otros (estructuras de memoria o estimación de la dimensión del sub-espacio de señal en el caso estocástico). La literatura consultada incluye trabajos de investigación clásicos ( ([27], [50], [52])' así como de los más reciente ([79] , [16] or [82]). Se presta especial atención a las herramientas de software disponibles para el diseño de redes neuronales y el procesamiento de series temporales. Luego de una revisión de los paquetes de software disponibles, las herramientas más promisiorias para ambas tareas son discutidas. Como resultado, un entorno de trabajo completo basado en herramientas de software maduras fue definido y usado. Para trabajar con los mencionados sistemas dinámicos, software especializado en el análisis y proceso de las series temporales fue empleado, y entonces las series caóticas fueron estudiadas. Ya que no toda la aleatoriedad es atribuible al caos, para caracterizar al sistema dinámico que genera la serie temporal se requiere una exploración de los sistemas caóticos-estocásticos, así como de los modelos de red para predecir una serie temporal asociada a uno de ellos. Aquí se pretende mostrar cómo el conocimiento del dominio, algo extensamente tratado en la literatura, puede ser de alguna manera sofisticado (tal como el espectro de Lyapunov de la serie o la dimensión del sub-espacio de señal). Para modelar el sistema dinámico generado por la serie temporal se usa el modelo de espacio de estados, por lo que la predicción de la serie temporal es traducida en la predicción del siguiente estado del sistema. Este modelo de espacio de estados, junto con el método de los delays (coordenadas demoradas) tiene importancia práctica en el desarrollo de este trabajo, específicamente, en el diseño de la capa de entrada en algunas redes (los perceptrones multicapa) y otros parámetros (los taps de las redes TLFN). Adicionalmente, el resto de los componentes de la red con determinados en varios casos a través de procedimientos tradicionalmente usados en las redes neuronales: los algoritmos genéticos. Los criterios para la selección de modelo (red) son discutidos y un balance entre performance y complejidad de la red es explorado luego, inspirado en el minimum description length de Rissanen y su estimación dada por el software elegido. Con respecto a los modelos de red empleados, las topologóas de sugeridas en la literatura como adecuadas para la predicción son usadas (TLFNs y redes recurrentes) junto con perceptrones multicapa (un clásico de las redes neuronales) y comités de redes. La efectividad de cada método es confirmada por el problema de predicción propuesto. Los comités de redes, donde las predicciones son una combinación convexa de las predicciones dadas por las redes individuales, son también usados extensamente. La necesidad de criterios para comparar el comportamiento del modelo con el del sistema real, a largo plazo, para un sistema dinámico estocástico, es presentada y dos alternativas son comentadas. Los resultados obtenidos prueban la existencia de una solución al problema del aprendizaje de la dependencia Entrada - Salida . Conjeturamos además que el sistema generador de serie de las ventas es dinámico-estocástico pero no caótico, ya que sólo tenemos una realización del proceso aleatorio correspondiente a las ventas. Al ser un sistema no caótico, la media de las predicciones de las ventas debería mejorar a medida que los datos disponibles aumentan, aunque la probabilidad de una predicción con un gran error es siempre no nula debido a la aleatoriedad presente. Esta solución es encontrada en una forma constructiva y exhaustiva. La exhaustividad puede deducirse de las siguiente cinco afirmaciones : el diseño de una red neuronal requiere conocer la dimensión de la entrada y de la salida, el número de capas ocultas y las neuronas en cada una de ellas el uso del teorema de takens-Mañé permite derivar la dimensión de la entrada por teoremas tales como los de Kolmogorov y Cybenko el uso de perceptrones con solo una capa oculta es justificado, por lo que varios de tales modelos son probados el número de neuronas en la capa oculta es determinada varias veces heurísticamente a través de algoritmos genéticos una sola neurona de salida da la predicción deseada. Como se dijo, dos tareas son llevadas a cabo: el desarrollo de un modelo para la predicción de la serie temporal y el análisis de un modelo factible para la reconstrucción dinámica del sistema. Con el mejor modelo predictivo, obtenido por el comité de dos redes se logró obtener un error aceptable en la predicción de una semana no contigua al conjunto de entrenamiento (7.04% para la semana 46/2011). Creemos que este es un resultado aceptable dada la cantidad de información disponible y representa una validación adicional de que las redes neuronales son útiles para la predicción de series temporales provenientes de sistemas dinámicos, sin importar si son estocásticos o no. Finalmente, los resultados experimentales confirmaron algunos hechos ya conocidos (tales como que agregar ruido a los datos de entrada y de salida de los valores de entrenamiento puede mejorar los resultados: que las redes recurrentes entrenadas con el algoritmo de retropropagación no presentan el problema del gradiente evanescente en periodos cortos y que el uso de de comités - que puede ser visto como una forma muy básica de inteligencia artificial distribuida - permite mejorar significativamente las predicciones).Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2020-06-01T18:24:18Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Pag13.pdf: 2711166 bytes, checksum: 6e066f05adc11acecb862159c6711772 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2020-06-01T19:42:49Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Pag13.pdf: 2711166 bytes, checksum: 6e066f05adc11acecb862159c6711772 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@fic.edu.uy) on 2020-06-01T20:04:58Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Pag13.pdf: 2711166 bytes, checksum: 6e066f05adc11acecb862159c6711772 (MD5) Previous issue date: 2013269 p.application/pdfenengUdelar.FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)REDES NEURONALESSERIES TEMPORALESModels for time series prediction based on neural networks. Case study : GLP sales prediction from ANCAP.Tesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaPaggi Straneo, HoracioRobledo, FrancoUniversidad de la República (Uruguay). Facultad de Ingeniería.Magíster en Ingeniería (Ingeniería Matemática)LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/24169/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/24169/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838687http://localhost:8080/xmlui/bitstream/20.500.12008/24169/3/license_textd77747f0b79dbc4c411d2260a3d95cd2MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/24169/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALPag13.pdfPag13.pdfapplication/pdf2711166http://localhost:8080/xmlui/bitstream/20.500.12008/24169/1/Pag13.pdf6e066f05adc11acecb862159c6711772MD5120.500.12008/241692020-10-28 12:24:47.334oai:colibri.udelar.edu.uy:20.500.12008/24169VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:05.247587COLIBRI - Universidad de la Repúblicafalse
spellingShingle Models for time series prediction based on neural networks. Case study : GLP sales prediction from ANCAP.
Paggi Straneo, Horacio
REDES NEURONALES
SERIES TEMPORALES
status_str acceptedVersion
title Models for time series prediction based on neural networks. Case study : GLP sales prediction from ANCAP.
title_full Models for time series prediction based on neural networks. Case study : GLP sales prediction from ANCAP.
title_fullStr Models for time series prediction based on neural networks. Case study : GLP sales prediction from ANCAP.
title_full_unstemmed Models for time series prediction based on neural networks. Case study : GLP sales prediction from ANCAP.
title_short Models for time series prediction based on neural networks. Case study : GLP sales prediction from ANCAP.
title_sort Models for time series prediction based on neural networks. Case study : GLP sales prediction from ANCAP.
topic REDES NEURONALES
SERIES TEMPORALES
url https://hdl.handle.net/20.500.12008/24169