Parallel multithreading algorithms forself-gravity computation inESyS-Particle
Supervisor(es): Nesmachnow, Sergio - Tancredi, Gonzalo
Resumen:
This thesis describes the design, implementation, and evaluation of efficient algorithms for self-gravity simulations in astronomical agglomerates. Due to the intrinsic complexity of modeling interactions between particles, agglomerate are studied using computational simulations. Self-gravity affects every particle in agglomerates, which can be composed of millions of particles. So, to perform a realistic simulation is computationally expensive. This thesis presents three parallel multithreading algorithms for self-gravity calculation, including a method that updates the occupied cells on an underlying grid and a variation of the Barnes & Hut method that partitions and arranges the simulation space in both an octal and a binary tree to speed up long range forces calculation. The goal of the algorithms is to make efficient use of the underlying grid that maps the simulated environment. The three methods were evaluated and compared over two scenarios: two agglomerates orbiting each other and a collapsing cube. The experimental evaluation comprises the performance analysis of the two scenarios using the two methods, including a comparison of the results obtained and the analysis of the numerical accuracy by the study of the conservation of the center of mass and angular momentum. Both scenarios were evaluated scaling the number of computational resources to simulate instances with different number of particles. Results show that the proposed octal tree Barnes & Hut method allows improving the performance of the self-gravity calculation up to 100 with respect to the occupied cell method. This way, efficient simulations are performed for the largest problem instance including 2,097,152 particles. The proposed algorithms are efficient and accurate methods for self-gravity simulations in astronomical agglomerates.
2020 | |
Simulation High-performance computing Self-gravity Astronomical agglomerates |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/27171 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807523182251343872 |
---|---|
author | Rocchetti Martínez, Néstor Pablo |
author_facet | Rocchetti Martínez, Néstor Pablo |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 36c32e9c6da50e6d55578c16944ef7f6 1996b8461bc290aef6a27d78c67b6b52 4eff1c29e9bf482a8cdc76fbc3178674 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/27171/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/27171/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/27171/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/27171/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/27171/1/ROC20.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Rocchetti Martínez Néstor Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería |
dc.creator.advisor.none.fl_str_mv | Nesmachnow, Sergio Tancredi, Gonzalo |
dc.creator.none.fl_str_mv | Rocchetti Martínez, Néstor Pablo |
dc.date.accessioned.none.fl_str_mv | 2021-04-21T18:27:31Z |
dc.date.available.none.fl_str_mv | 2021-04-21T18:27:31Z |
dc.date.issued.none.fl_str_mv | 2020 |
dc.description.abstract.none.fl_txt_mv | This thesis describes the design, implementation, and evaluation of efficient algorithms for self-gravity simulations in astronomical agglomerates. Due to the intrinsic complexity of modeling interactions between particles, agglomerate are studied using computational simulations. Self-gravity affects every particle in agglomerates, which can be composed of millions of particles. So, to perform a realistic simulation is computationally expensive. This thesis presents three parallel multithreading algorithms for self-gravity calculation, including a method that updates the occupied cells on an underlying grid and a variation of the Barnes & Hut method that partitions and arranges the simulation space in both an octal and a binary tree to speed up long range forces calculation. The goal of the algorithms is to make efficient use of the underlying grid that maps the simulated environment. The three methods were evaluated and compared over two scenarios: two agglomerates orbiting each other and a collapsing cube. The experimental evaluation comprises the performance analysis of the two scenarios using the two methods, including a comparison of the results obtained and the analysis of the numerical accuracy by the study of the conservation of the center of mass and angular momentum. Both scenarios were evaluated scaling the number of computational resources to simulate instances with different number of particles. Results show that the proposed octal tree Barnes & Hut method allows improving the performance of the self-gravity calculation up to 100 with respect to the occupied cell method. This way, efficient simulations are performed for the largest problem instance including 2,097,152 particles. The proposed algorithms are efficient and accurate methods for self-gravity simulations in astronomical agglomerates. |
dc.format.extent.es.fl_str_mv | 91 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Rocchetti Martínez, N. Parallel multithreading algorithms forself-gravity computation inESyS-Particle [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2020. |
dc.identifier.issn.none.fl_str_mv | 1688-2792 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/27171 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | Udelar.FI |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Simulation High-performance computing Self-gravity Astronomical agglomerates |
dc.title.none.fl_str_mv | Parallel multithreading algorithms forself-gravity computation inESyS-Particle |
dc.type.es.fl_str_mv | Tesis de maestría |
dc.type.none.fl_str_mv | info:eu-repo/semantics/masterThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | This thesis describes the design, implementation, and evaluation of efficient algorithms for self-gravity simulations in astronomical agglomerates. Due to the intrinsic complexity of modeling interactions between particles, agglomerate are studied using computational simulations. Self-gravity affects every particle in agglomerates, which can be composed of millions of particles. So, to perform a realistic simulation is computationally expensive. This thesis presents three parallel multithreading algorithms for self-gravity calculation, including a method that updates the occupied cells on an underlying grid and a variation of the Barnes & Hut method that partitions and arranges the simulation space in both an octal and a binary tree to speed up long range forces calculation. The goal of the algorithms is to make efficient use of the underlying grid that maps the simulated environment. The three methods were evaluated and compared over two scenarios: two agglomerates orbiting each other and a collapsing cube. The experimental evaluation comprises the performance analysis of the two scenarios using the two methods, including a comparison of the results obtained and the analysis of the numerical accuracy by the study of the conservation of the center of mass and angular momentum. Both scenarios were evaluated scaling the number of computational resources to simulate instances with different number of particles. Results show that the proposed octal tree Barnes & Hut method allows improving the performance of the self-gravity calculation up to 100 with respect to the occupied cell method. This way, efficient simulations are performed for the largest problem instance including 2,097,152 particles. The proposed algorithms are efficient and accurate methods for self-gravity simulations in astronomical agglomerates. |
eu_rights_str_mv | openAccess |
format | masterThesis |
id | COLIBRI_1e7e2953990d33c4b8b382d13345aa2e |
identifier_str_mv | Rocchetti Martínez, N. Parallel multithreading algorithms forself-gravity computation inESyS-Particle [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2020. 1688-2792 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/27171 |
publishDate | 2020 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Rocchetti Martínez Néstor Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería2021-04-21T18:27:31Z2021-04-21T18:27:31Z2020Rocchetti Martínez, N. Parallel multithreading algorithms forself-gravity computation inESyS-Particle [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2020.1688-2792https://hdl.handle.net/20.500.12008/27171This thesis describes the design, implementation, and evaluation of efficient algorithms for self-gravity simulations in astronomical agglomerates. Due to the intrinsic complexity of modeling interactions between particles, agglomerate are studied using computational simulations. Self-gravity affects every particle in agglomerates, which can be composed of millions of particles. So, to perform a realistic simulation is computationally expensive. This thesis presents three parallel multithreading algorithms for self-gravity calculation, including a method that updates the occupied cells on an underlying grid and a variation of the Barnes & Hut method that partitions and arranges the simulation space in both an octal and a binary tree to speed up long range forces calculation. The goal of the algorithms is to make efficient use of the underlying grid that maps the simulated environment. The three methods were evaluated and compared over two scenarios: two agglomerates orbiting each other and a collapsing cube. The experimental evaluation comprises the performance analysis of the two scenarios using the two methods, including a comparison of the results obtained and the analysis of the numerical accuracy by the study of the conservation of the center of mass and angular momentum. Both scenarios were evaluated scaling the number of computational resources to simulate instances with different number of particles. Results show that the proposed octal tree Barnes & Hut method allows improving the performance of the self-gravity calculation up to 100 with respect to the occupied cell method. This way, efficient simulations are performed for the largest problem instance including 2,097,152 particles. The proposed algorithms are efficient and accurate methods for self-gravity simulations in astronomical agglomerates.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2021-04-21T17:17:57Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) ROC20.pdf: 1850721 bytes, checksum: 4eff1c29e9bf482a8cdc76fbc3178674 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2021-04-21T17:25:34Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) ROC20.pdf: 1850721 bytes, checksum: 4eff1c29e9bf482a8cdc76fbc3178674 (MD5)Made available in DSpace by LUNA FABIANA (mafabiana.luna@gmail.com) on 2021-04-21T18:27:31Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) ROC20.pdf: 1850721 bytes, checksum: 4eff1c29e9bf482a8cdc76fbc3178674 (MD5) Previous issue date: 202091 p.application/pdfenengUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)SimulationHigh-performance computingSelf-gravityAstronomical agglomeratesParallel multithreading algorithms forself-gravity computation inESyS-ParticleTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaRocchetti Martínez, Néstor PabloNesmachnow, SergioTancredi, GonzaloUniversidad de la República (Uruguay). Facultad de IngenieríaMagíster en InformáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/27171/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/27171/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/27171/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/27171/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALROC20.pdfROC20.pdfapplication/pdf1850721http://localhost:8080/xmlui/bitstream/20.500.12008/27171/1/ROC20.pdf4eff1c29e9bf482a8cdc76fbc3178674MD5120.500.12008/271712021-04-21 15:27:31.974oai:colibri.udelar.edu.uy:20.500.12008/27171VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:27.161670COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Parallel multithreading algorithms forself-gravity computation inESyS-Particle Rocchetti Martínez, Néstor Pablo Simulation High-performance computing Self-gravity Astronomical agglomerates |
status_str | acceptedVersion |
title | Parallel multithreading algorithms forself-gravity computation inESyS-Particle |
title_full | Parallel multithreading algorithms forself-gravity computation inESyS-Particle |
title_fullStr | Parallel multithreading algorithms forself-gravity computation inESyS-Particle |
title_full_unstemmed | Parallel multithreading algorithms forself-gravity computation inESyS-Particle |
title_short | Parallel multithreading algorithms forself-gravity computation inESyS-Particle |
title_sort | Parallel multithreading algorithms forself-gravity computation inESyS-Particle |
topic | Simulation High-performance computing Self-gravity Astronomical agglomerates |
url | https://hdl.handle.net/20.500.12008/27171 |