Parallel multithreading algorithms forself-gravity computation inESyS-Particle

Rocchetti Martínez, Néstor Pablo

Supervisor(es): Nesmachnow, Sergio - Tancredi, Gonzalo

Resumen:

This thesis describes the design, implementation, and evaluation of efficient algorithms for self-gravity simulations in astronomical agglomerates. Due to the intrinsic complexity of modeling interactions between particles, agglomerate are studied using computational simulations. Self-gravity affects every particle in agglomerates, which can be composed of millions of particles. So, to perform a realistic simulation is computationally expensive. This thesis presents three parallel multithreading algorithms for self-gravity calculation, including a method that updates the occupied cells on an underlying grid and a variation of the Barnes & Hut method that partitions and arranges the simulation space in both an octal and a binary tree to speed up long range forces calculation. The goal of the algorithms is to make efficient use of the underlying grid that maps the simulated environment. The three methods were evaluated and compared over two scenarios: two agglomerates orbiting each other and a collapsing cube. The experimental evaluation comprises the performance analysis of the two scenarios using the two methods, including a comparison of the results obtained and the analysis of the numerical accuracy by the study of the conservation of the center of mass and angular momentum. Both scenarios were evaluated scaling the number of computational resources to simulate instances with different number of particles. Results show that the proposed octal tree Barnes & Hut method allows improving the performance of the self-gravity calculation up to 100 with respect to the occupied cell method. This way, efficient simulations are performed for the largest problem instance including 2,097,152 particles. The proposed algorithms are efficient and accurate methods for self-gravity simulations in astronomical agglomerates.


Detalles Bibliográficos
2020
Simulation
High-performance computing
Self-gravity
Astronomical agglomerates
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/27171
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523182251343872
author Rocchetti Martínez, Néstor Pablo
author_facet Rocchetti Martínez, Néstor Pablo
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
4eff1c29e9bf482a8cdc76fbc3178674
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/27171/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/27171/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/27171/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/27171/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/27171/1/ROC20.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Rocchetti Martínez Néstor Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.creator.advisor.none.fl_str_mv Nesmachnow, Sergio
Tancredi, Gonzalo
dc.creator.none.fl_str_mv Rocchetti Martínez, Néstor Pablo
dc.date.accessioned.none.fl_str_mv 2021-04-21T18:27:31Z
dc.date.available.none.fl_str_mv 2021-04-21T18:27:31Z
dc.date.issued.none.fl_str_mv 2020
dc.description.abstract.none.fl_txt_mv This thesis describes the design, implementation, and evaluation of efficient algorithms for self-gravity simulations in astronomical agglomerates. Due to the intrinsic complexity of modeling interactions between particles, agglomerate are studied using computational simulations. Self-gravity affects every particle in agglomerates, which can be composed of millions of particles. So, to perform a realistic simulation is computationally expensive. This thesis presents three parallel multithreading algorithms for self-gravity calculation, including a method that updates the occupied cells on an underlying grid and a variation of the Barnes & Hut method that partitions and arranges the simulation space in both an octal and a binary tree to speed up long range forces calculation. The goal of the algorithms is to make efficient use of the underlying grid that maps the simulated environment. The three methods were evaluated and compared over two scenarios: two agglomerates orbiting each other and a collapsing cube. The experimental evaluation comprises the performance analysis of the two scenarios using the two methods, including a comparison of the results obtained and the analysis of the numerical accuracy by the study of the conservation of the center of mass and angular momentum. Both scenarios were evaluated scaling the number of computational resources to simulate instances with different number of particles. Results show that the proposed octal tree Barnes & Hut method allows improving the performance of the self-gravity calculation up to 100 with respect to the occupied cell method. This way, efficient simulations are performed for the largest problem instance including 2,097,152 particles. The proposed algorithms are efficient and accurate methods for self-gravity simulations in astronomical agglomerates.
dc.format.extent.es.fl_str_mv 91 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Rocchetti Martínez, N. Parallel multithreading algorithms forself-gravity computation inESyS-Particle [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2020.
dc.identifier.issn.none.fl_str_mv 1688-2792
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/27171
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Udelar.FI
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Simulation
High-performance computing
Self-gravity
Astronomical agglomerates
dc.title.none.fl_str_mv Parallel multithreading algorithms forself-gravity computation inESyS-Particle
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description This thesis describes the design, implementation, and evaluation of efficient algorithms for self-gravity simulations in astronomical agglomerates. Due to the intrinsic complexity of modeling interactions between particles, agglomerate are studied using computational simulations. Self-gravity affects every particle in agglomerates, which can be composed of millions of particles. So, to perform a realistic simulation is computationally expensive. This thesis presents three parallel multithreading algorithms for self-gravity calculation, including a method that updates the occupied cells on an underlying grid and a variation of the Barnes & Hut method that partitions and arranges the simulation space in both an octal and a binary tree to speed up long range forces calculation. The goal of the algorithms is to make efficient use of the underlying grid that maps the simulated environment. The three methods were evaluated and compared over two scenarios: two agglomerates orbiting each other and a collapsing cube. The experimental evaluation comprises the performance analysis of the two scenarios using the two methods, including a comparison of the results obtained and the analysis of the numerical accuracy by the study of the conservation of the center of mass and angular momentum. Both scenarios were evaluated scaling the number of computational resources to simulate instances with different number of particles. Results show that the proposed octal tree Barnes & Hut method allows improving the performance of the self-gravity calculation up to 100 with respect to the occupied cell method. This way, efficient simulations are performed for the largest problem instance including 2,097,152 particles. The proposed algorithms are efficient and accurate methods for self-gravity simulations in astronomical agglomerates.
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_1e7e2953990d33c4b8b382d13345aa2e
identifier_str_mv Rocchetti Martínez, N. Parallel multithreading algorithms forself-gravity computation inESyS-Particle [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2020.
1688-2792
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/27171
publishDate 2020
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Rocchetti Martínez Néstor Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería2021-04-21T18:27:31Z2021-04-21T18:27:31Z2020Rocchetti Martínez, N. Parallel multithreading algorithms forself-gravity computation inESyS-Particle [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2020.1688-2792https://hdl.handle.net/20.500.12008/27171This thesis describes the design, implementation, and evaluation of efficient algorithms for self-gravity simulations in astronomical agglomerates. Due to the intrinsic complexity of modeling interactions between particles, agglomerate are studied using computational simulations. Self-gravity affects every particle in agglomerates, which can be composed of millions of particles. So, to perform a realistic simulation is computationally expensive. This thesis presents three parallel multithreading algorithms for self-gravity calculation, including a method that updates the occupied cells on an underlying grid and a variation of the Barnes & Hut method that partitions and arranges the simulation space in both an octal and a binary tree to speed up long range forces calculation. The goal of the algorithms is to make efficient use of the underlying grid that maps the simulated environment. The three methods were evaluated and compared over two scenarios: two agglomerates orbiting each other and a collapsing cube. The experimental evaluation comprises the performance analysis of the two scenarios using the two methods, including a comparison of the results obtained and the analysis of the numerical accuracy by the study of the conservation of the center of mass and angular momentum. Both scenarios were evaluated scaling the number of computational resources to simulate instances with different number of particles. Results show that the proposed octal tree Barnes & Hut method allows improving the performance of the self-gravity calculation up to 100 with respect to the occupied cell method. This way, efficient simulations are performed for the largest problem instance including 2,097,152 particles. The proposed algorithms are efficient and accurate methods for self-gravity simulations in astronomical agglomerates.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2021-04-21T17:17:57Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) ROC20.pdf: 1850721 bytes, checksum: 4eff1c29e9bf482a8cdc76fbc3178674 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2021-04-21T17:25:34Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) ROC20.pdf: 1850721 bytes, checksum: 4eff1c29e9bf482a8cdc76fbc3178674 (MD5)Made available in DSpace by LUNA FABIANA (mafabiana.luna@gmail.com) on 2021-04-21T18:27:31Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) ROC20.pdf: 1850721 bytes, checksum: 4eff1c29e9bf482a8cdc76fbc3178674 (MD5) Previous issue date: 202091 p.application/pdfenengUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)SimulationHigh-performance computingSelf-gravityAstronomical agglomeratesParallel multithreading algorithms forself-gravity computation inESyS-ParticleTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaRocchetti Martínez, Néstor PabloNesmachnow, SergioTancredi, GonzaloUniversidad de la República (Uruguay). Facultad de IngenieríaMagíster en InformáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/27171/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/27171/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/27171/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/27171/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALROC20.pdfROC20.pdfapplication/pdf1850721http://localhost:8080/xmlui/bitstream/20.500.12008/27171/1/ROC20.pdf4eff1c29e9bf482a8cdc76fbc3178674MD5120.500.12008/271712021-04-21 15:27:31.974oai:colibri.udelar.edu.uy:20.500.12008/27171VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:27.161670COLIBRI - Universidad de la Repúblicafalse
spellingShingle Parallel multithreading algorithms forself-gravity computation inESyS-Particle
Rocchetti Martínez, Néstor Pablo
Simulation
High-performance computing
Self-gravity
Astronomical agglomerates
status_str acceptedVersion
title Parallel multithreading algorithms forself-gravity computation inESyS-Particle
title_full Parallel multithreading algorithms forself-gravity computation inESyS-Particle
title_fullStr Parallel multithreading algorithms forself-gravity computation inESyS-Particle
title_full_unstemmed Parallel multithreading algorithms forself-gravity computation inESyS-Particle
title_short Parallel multithreading algorithms forself-gravity computation inESyS-Particle
title_sort Parallel multithreading algorithms forself-gravity computation inESyS-Particle
topic Simulation
High-performance computing
Self-gravity
Astronomical agglomerates
url https://hdl.handle.net/20.500.12008/27171