Chemosensitizer effect of violacein on cisplatin-treated bladder cancer cells

Alem, Diego - Canclini, Lucía - Castro-Sowinski, Susana - Martínez-López, Wilner

Resumen:

Background: Bladder cancer is the tenth most common cancer worldwide. Considering its high prevalence (vul- nerability to multiple recurrences and progression despite local therapy), which leads to a substantial health service burden, it becomes necessary to develop new strategies to increase the effectiveness of bladder tumor therapy. Natural compounds with antiproliferative effect on cancer cells could be a good choice for co-adjuvant chemotherapy. Microorganisms are one of the main sources for natural compounds. Pigments extracted from the cold-adapted microorganisms can contribute to the development of a broader range of applications in biotechnology. Violacein is a purple pigment commonly produced by many bacterial strains. We have previously shown that very low concentrations of violacein extracted from Janthinobacterium sp. produced an antiproliferative effect on HeLa cells.Objective: With the aim to determine if violacein has an antiproliferative activity on bladder cancer cells, as well as to test if it has synergistic effects on cisplatin treated cells in vitro, T24 and 253J cell lines (derived bladder cancer cells from carcinoma in situ and retroperitoneal metastasis, respectively) were exposed to different concentrations of violacein in the presence or absence of cisplatin. Methods: i) Resazurin assay and flow cytometry were performed in two bladder cancer-derived cell lines, namely T24 and 253J, to see if violacein affects cell viability and induce cell death. ii) To find out whether violacein sensitizes bladder cancer cells to cisplatin, the drug interaction among different doses of cisplatin and violacein was analyzed, as well their combination index was determined. iii) The effect of violacein to induce primary genetic damage was determined through the analysis of induced micronuclei frequency and 𝛾H2AX foci, as well as performing the comet assay. Results: The half-maximal inhibitory concentration of violacein at 24 h for both cell lines were around 500 nM, and decreased below 400 nM in combination with 10 μM of cisplatin, indicating antiproliferative and sensitizing effects of violacein to cisplatin in both cell lines tested. A clear cell cycle delay, as well as an increase in the percentage of cell death was observed by flow cytometry at 300 nM of violacein, either alone or in combination with cisplatin. On the other hand, the analysis of the micronucleus frequency did not evidence an increase in genetic damage. Moreover, in combined treatments with cisplatin there was a slight decrease on micronucleus induction. Besides, the induction of genetic damage was not observed through comet assay when cells were treated with violacein alone, however, when cells were treated with violacein in the presence of cisplatin (10 μM). The production of genetic damage was diminished in T24 or 253J cells. By the same token, increase in the frequency of 𝛾H2AX foci by violacein was not observed at any tested dose in both cell lines. Conclusion: It was shown that violacein has an in vitro antiproliferative effect in bladder cancer cell lines, sensitizing them to cisplatin. Interestingly, at doses tested, violacein did not induce genotoxicity and reduce the genotoxic effect produced by cisplatin.


Detalles Bibliográficos
2022
Non-genotoxic
Cytotoxic
Natural product
Violacein
Cisplatin sensitization
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/38066
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522796279955456
author Alem, Diego
author2 Canclini, Lucía
Castro-Sowinski, Susana
Martínez-López, Wilner
author2_role author
author
author
author_facet Alem, Diego
Canclini, Lucía
Castro-Sowinski, Susana
Martínez-López, Wilner
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
e8c30e04e865334cac2bfcba70aad8cb
1996b8461bc290aef6a27d78c67b6b52
0593e1c1124e3f29490225e18e3af796
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/38066/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/38066/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/38066/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/38066/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/38066/1/10.1016jccmp.2022.100036.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Alem Diego, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Biología.
Canclini Lucía, IIBCE
Castro-Sowinski Susana, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Biología.
Martínez-López Wilner, IIBCE
dc.creator.none.fl_str_mv Alem, Diego
Canclini, Lucía
Castro-Sowinski, Susana
Martínez-López, Wilner
dc.date.accessioned.none.fl_str_mv 2023-07-10T18:05:35Z
dc.date.available.none.fl_str_mv 2023-07-10T18:05:35Z
dc.date.issued.none.fl_str_mv 2022
dc.description.abstract.none.fl_txt_mv Background: Bladder cancer is the tenth most common cancer worldwide. Considering its high prevalence (vul- nerability to multiple recurrences and progression despite local therapy), which leads to a substantial health service burden, it becomes necessary to develop new strategies to increase the effectiveness of bladder tumor therapy. Natural compounds with antiproliferative effect on cancer cells could be a good choice for co-adjuvant chemotherapy. Microorganisms are one of the main sources for natural compounds. Pigments extracted from the cold-adapted microorganisms can contribute to the development of a broader range of applications in biotechnology. Violacein is a purple pigment commonly produced by many bacterial strains. We have previously shown that very low concentrations of violacein extracted from Janthinobacterium sp. produced an antiproliferative effect on HeLa cells.Objective: With the aim to determine if violacein has an antiproliferative activity on bladder cancer cells, as well as to test if it has synergistic effects on cisplatin treated cells in vitro, T24 and 253J cell lines (derived bladder cancer cells from carcinoma in situ and retroperitoneal metastasis, respectively) were exposed to different concentrations of violacein in the presence or absence of cisplatin. Methods: i) Resazurin assay and flow cytometry were performed in two bladder cancer-derived cell lines, namely T24 and 253J, to see if violacein affects cell viability and induce cell death. ii) To find out whether violacein sensitizes bladder cancer cells to cisplatin, the drug interaction among different doses of cisplatin and violacein was analyzed, as well their combination index was determined. iii) The effect of violacein to induce primary genetic damage was determined through the analysis of induced micronuclei frequency and 𝛾H2AX foci, as well as performing the comet assay. Results: The half-maximal inhibitory concentration of violacein at 24 h for both cell lines were around 500 nM, and decreased below 400 nM in combination with 10 μM of cisplatin, indicating antiproliferative and sensitizing effects of violacein to cisplatin in both cell lines tested. A clear cell cycle delay, as well as an increase in the percentage of cell death was observed by flow cytometry at 300 nM of violacein, either alone or in combination with cisplatin. On the other hand, the analysis of the micronucleus frequency did not evidence an increase in genetic damage. Moreover, in combined treatments with cisplatin there was a slight decrease on micronucleus induction. Besides, the induction of genetic damage was not observed through comet assay when cells were treated with violacein alone, however, when cells were treated with violacein in the presence of cisplatin (10 μM). The production of genetic damage was diminished in T24 or 253J cells. By the same token, increase in the frequency of 𝛾H2AX foci by violacein was not observed at any tested dose in both cell lines. Conclusion: It was shown that violacein has an in vitro antiproliferative effect in bladder cancer cell lines, sensitizing them to cisplatin. Interestingly, at doses tested, violacein did not induce genotoxicity and reduce the genotoxic effect produced by cisplatin.
dc.format.extent.es.fl_str_mv 9 h.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Alem, D, Canclini, L, Castro-Sowinski, S. [y otro autor]. "Chemosensitizer effect of violacein on cisplatin-treated bladder cancer cells" [en línea] Clinical Complementary Medicine and Pharmacology, 2(2): 1000362022. DOI: 10.1016/j.ccmp.2022.100036. 2022
dc.identifier.doi.none.fl_str_mv 10.1016/j.ccmp.2022.100036
dc.identifier.issn.none.fl_str_mv 2772-3712
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/38066
dc.language.iso.none.fl_str_mv en_US
eng
dc.publisher.es.fl_str_mv Elsevier
dc.relation.ispartof.es.fl_str_mv Clinical Complementary Medicine and Pharmacology,2022, 2(2): 100036
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Non-genotoxic
Cytotoxic
Natural product
Violacein
Cisplatin sensitization
dc.title.none.fl_str_mv Chemosensitizer effect of violacein on cisplatin-treated bladder cancer cells
dc.type.es.fl_str_mv Artículo
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Background: Bladder cancer is the tenth most common cancer worldwide. Considering its high prevalence (vul- nerability to multiple recurrences and progression despite local therapy), which leads to a substantial health service burden, it becomes necessary to develop new strategies to increase the effectiveness of bladder tumor therapy. Natural compounds with antiproliferative effect on cancer cells could be a good choice for co-adjuvant chemotherapy. Microorganisms are one of the main sources for natural compounds. Pigments extracted from the cold-adapted microorganisms can contribute to the development of a broader range of applications in biotechnology. Violacein is a purple pigment commonly produced by many bacterial strains. We have previously shown that very low concentrations of violacein extracted from Janthinobacterium sp. produced an antiproliferative effect on HeLa cells.Objective: With the aim to determine if violacein has an antiproliferative activity on bladder cancer cells, as well as to test if it has synergistic effects on cisplatin treated cells in vitro, T24 and 253J cell lines (derived bladder cancer cells from carcinoma in situ and retroperitoneal metastasis, respectively) were exposed to different concentrations of violacein in the presence or absence of cisplatin. Methods: i) Resazurin assay and flow cytometry were performed in two bladder cancer-derived cell lines, namely T24 and 253J, to see if violacein affects cell viability and induce cell death. ii) To find out whether violacein sensitizes bladder cancer cells to cisplatin, the drug interaction among different doses of cisplatin and violacein was analyzed, as well their combination index was determined. iii) The effect of violacein to induce primary genetic damage was determined through the analysis of induced micronuclei frequency and 𝛾H2AX foci, as well as performing the comet assay. Results: The half-maximal inhibitory concentration of violacein at 24 h for both cell lines were around 500 nM, and decreased below 400 nM in combination with 10 μM of cisplatin, indicating antiproliferative and sensitizing effects of violacein to cisplatin in both cell lines tested. A clear cell cycle delay, as well as an increase in the percentage of cell death was observed by flow cytometry at 300 nM of violacein, either alone or in combination with cisplatin. On the other hand, the analysis of the micronucleus frequency did not evidence an increase in genetic damage. Moreover, in combined treatments with cisplatin there was a slight decrease on micronucleus induction. Besides, the induction of genetic damage was not observed through comet assay when cells were treated with violacein alone, however, when cells were treated with violacein in the presence of cisplatin (10 μM). The production of genetic damage was diminished in T24 or 253J cells. By the same token, increase in the frequency of 𝛾H2AX foci by violacein was not observed at any tested dose in both cell lines. Conclusion: It was shown that violacein has an in vitro antiproliferative effect in bladder cancer cell lines, sensitizing them to cisplatin. Interestingly, at doses tested, violacein did not induce genotoxicity and reduce the genotoxic effect produced by cisplatin.
eu_rights_str_mv openAccess
format article
id COLIBRI_1cd7d54b4461aaecdacac31fa8d219b4
identifier_str_mv Alem, D, Canclini, L, Castro-Sowinski, S. [y otro autor]. "Chemosensitizer effect of violacein on cisplatin-treated bladder cancer cells" [en línea] Clinical Complementary Medicine and Pharmacology, 2(2): 1000362022. DOI: 10.1016/j.ccmp.2022.100036. 2022
2772-3712
10.1016/j.ccmp.2022.100036
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en_US
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/38066
publishDate 2022
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Alem Diego, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Biología.Canclini Lucía, IIBCECastro-Sowinski Susana, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Biología.Martínez-López Wilner, IIBCE2023-07-10T18:05:35Z2023-07-10T18:05:35Z2022Alem, D, Canclini, L, Castro-Sowinski, S. [y otro autor]. "Chemosensitizer effect of violacein on cisplatin-treated bladder cancer cells" [en línea] Clinical Complementary Medicine and Pharmacology, 2(2): 1000362022. DOI: 10.1016/j.ccmp.2022.100036. 20222772-3712https://hdl.handle.net/20.500.12008/3806610.1016/j.ccmp.2022.100036Background: Bladder cancer is the tenth most common cancer worldwide. Considering its high prevalence (vul- nerability to multiple recurrences and progression despite local therapy), which leads to a substantial health service burden, it becomes necessary to develop new strategies to increase the effectiveness of bladder tumor therapy. Natural compounds with antiproliferative effect on cancer cells could be a good choice for co-adjuvant chemotherapy. Microorganisms are one of the main sources for natural compounds. Pigments extracted from the cold-adapted microorganisms can contribute to the development of a broader range of applications in biotechnology. Violacein is a purple pigment commonly produced by many bacterial strains. We have previously shown that very low concentrations of violacein extracted from Janthinobacterium sp. produced an antiproliferative effect on HeLa cells.Objective: With the aim to determine if violacein has an antiproliferative activity on bladder cancer cells, as well as to test if it has synergistic effects on cisplatin treated cells in vitro, T24 and 253J cell lines (derived bladder cancer cells from carcinoma in situ and retroperitoneal metastasis, respectively) were exposed to different concentrations of violacein in the presence or absence of cisplatin. Methods: i) Resazurin assay and flow cytometry were performed in two bladder cancer-derived cell lines, namely T24 and 253J, to see if violacein affects cell viability and induce cell death. ii) To find out whether violacein sensitizes bladder cancer cells to cisplatin, the drug interaction among different doses of cisplatin and violacein was analyzed, as well their combination index was determined. iii) The effect of violacein to induce primary genetic damage was determined through the analysis of induced micronuclei frequency and 𝛾H2AX foci, as well as performing the comet assay. Results: The half-maximal inhibitory concentration of violacein at 24 h for both cell lines were around 500 nM, and decreased below 400 nM in combination with 10 μM of cisplatin, indicating antiproliferative and sensitizing effects of violacein to cisplatin in both cell lines tested. A clear cell cycle delay, as well as an increase in the percentage of cell death was observed by flow cytometry at 300 nM of violacein, either alone or in combination with cisplatin. On the other hand, the analysis of the micronucleus frequency did not evidence an increase in genetic damage. Moreover, in combined treatments with cisplatin there was a slight decrease on micronucleus induction. Besides, the induction of genetic damage was not observed through comet assay when cells were treated with violacein alone, however, when cells were treated with violacein in the presence of cisplatin (10 μM). The production of genetic damage was diminished in T24 or 253J cells. By the same token, increase in the frequency of 𝛾H2AX foci by violacein was not observed at any tested dose in both cell lines. Conclusion: It was shown that violacein has an in vitro antiproliferative effect in bladder cancer cell lines, sensitizing them to cisplatin. Interestingly, at doses tested, violacein did not induce genotoxicity and reduce the genotoxic effect produced by cisplatin.Submitted by Farías Verónica (vfarias@fcien.edu.uy) on 2023-07-07T14:10:58Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) 10.1016jccmp.2022.100036.pdf: 2995001 bytes, checksum: 0593e1c1124e3f29490225e18e3af796 (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2023-07-10T12:37:24Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) 10.1016jccmp.2022.100036.pdf: 2995001 bytes, checksum: 0593e1c1124e3f29490225e18e3af796 (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2023-07-10T18:05:35Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) 10.1016jccmp.2022.100036.pdf: 2995001 bytes, checksum: 0593e1c1124e3f29490225e18e3af796 (MD5) Previous issue date: 20229 h.application/pdfen_USengElsevierClinical Complementary Medicine and Pharmacology,2022, 2(2): 100036Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Non-genotoxicCytotoxicNatural productViolaceinCisplatin sensitizationChemosensitizer effect of violacein on cisplatin-treated bladder cancer cellsArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaAlem, DiegoCanclini, LucíaCastro-Sowinski, SusanaMartínez-López, WilnerLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/38066/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/38066/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838782http://localhost:8080/xmlui/bitstream/20.500.12008/38066/3/license_texte8c30e04e865334cac2bfcba70aad8cbMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/38066/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINAL10.1016jccmp.2022.100036.pdf10.1016jccmp.2022.100036.pdfapplication/pdf2995001http://localhost:8080/xmlui/bitstream/20.500.12008/38066/1/10.1016jccmp.2022.100036.pdf0593e1c1124e3f29490225e18e3af796MD5120.500.12008/380662023-07-10 15:05:35.882oai:colibri.udelar.edu.uy:20.500.12008/38066VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:28:57.324784COLIBRI - Universidad de la Repúblicafalse
spellingShingle Chemosensitizer effect of violacein on cisplatin-treated bladder cancer cells
Alem, Diego
Non-genotoxic
Cytotoxic
Natural product
Violacein
Cisplatin sensitization
status_str publishedVersion
title Chemosensitizer effect of violacein on cisplatin-treated bladder cancer cells
title_full Chemosensitizer effect of violacein on cisplatin-treated bladder cancer cells
title_fullStr Chemosensitizer effect of violacein on cisplatin-treated bladder cancer cells
title_full_unstemmed Chemosensitizer effect of violacein on cisplatin-treated bladder cancer cells
title_short Chemosensitizer effect of violacein on cisplatin-treated bladder cancer cells
title_sort Chemosensitizer effect of violacein on cisplatin-treated bladder cancer cells
topic Non-genotoxic
Cytotoxic
Natural product
Violacein
Cisplatin sensitization
url https://hdl.handle.net/20.500.12008/38066