Geodesic tracking and the shape of ergodic rotation sets
Resumen:
We prove a structure theorem for ergodic homological rotation sets of homeomorphisms isotopic to the identity on a closed orientable hyperbolic surface: this set is made of a finite number of pieces that are either one-dimensional or almost convex. The latter ones give birth to horseshoes; in the case of a zero-entropy homeomorphism we show that there exists a geodesic lamination containing the directions in which generic orbits with respect to ergodic invariant probabilities turn around the surface under iterations of the homeomorphism. The proof is based on the idea of geodesic tracking of orbits that are typical for some invariant measure by geodesics on the surface, that allows to get links between the dynamics of such points and the one of the geodesic flow on some invariant subset of the unit tangent bundle of the surface.
2024 | |
MATHEMATICS - DYNAMICAL SYSTEMS | |
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/44753 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Accessibility and ergodicity for collapsed Anosov flows
Autor(es):: Fenley, Sergio
Fecha de publicación:: (2021) -
Expansive partially hyperbolic diffeomorphisms with one-dimensional center
Autor(es):: Sambarino, Martín
Fecha de publicación:: (2024) -
Branched coverings of the sphere having a completely invariant continuum with infinitely many Wada Lakes
Autor(es):: Iglesias, Jorge
Fecha de publicación:: (2022) -
Exact dimension of Furstenberg measures
Autor(es):: Ledrappier, François
Fecha de publicación:: (2021) -
Dilemas sociales sobre redes espaciales
Autor(es):: Sicardi Segade, Estrella Adriana
Fecha de publicación:: (2012)