Predicting wireless RSSI using machine learning on graphs.
Resumen:
In wireless communications, optimizing the resource allocation requires the knowledge of the state of the channel. This is even more important in device-to-device communications, one typical use case in 5G/6G networks, where such knowledge is hard to obtain at reasonable signaling costs. In this paper, we study the use of graph-based machine learning methods to address this problem. That is to say, we learn to predict the channel state on a given link through measurements on other links, thus decreasing signaling overhead. In particular, we model the problem as a link-prediction one and we consider two representative approaches: Random Dot Product Graphs and Graph Neural Networks. The key point is that these methods consider the geometric structure underlying the data. They thus enable better generalization and require less training data than classic methods, as we show on our evaluation using a dataset of RSSI measurements of real-world Wi-Fi operating networks.
2021 | |
Este trabajo ha sido apoyado por la Agencia Nacional de Investigación e Innovación (ANII), Uruguay, subvenciones Fondo Maria Viñas 3 2018 1 148149 y Fondo María Viñas 1 2019 1 155700. | |
Wireless communication Knowledge engineering Costs Training data Machine learning Particle measurements Graph neural networks Embeddings Link-prediction Graph representation learning |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/30570 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522899177766912 |
---|---|
author | Rattaro, Claudina |
author2 | Larroca, Federico Capdehourat, Germán |
author2_role | author author |
author_facet | Rattaro, Claudina Larroca, Federico Capdehourat, Germán |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 36c32e9c6da50e6d55578c16944ef7f6 1996b8461bc290aef6a27d78c67b6b52 bff8cbf09c8062113c7f93a89ea2fa72 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/30570/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/30570/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/30570/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/30570/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/30570/1/RLC21.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Rattaro Claudina, Universidad de la República (Uruguay). Facultad de Ingeniería. Larroca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería. Capdehourat Germán, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.creator.none.fl_str_mv | Rattaro, Claudina Larroca, Federico Capdehourat, Germán |
dc.date.accessioned.none.fl_str_mv | 2021-12-29T17:28:47Z |
dc.date.available.none.fl_str_mv | 2021-12-29T17:28:47Z |
dc.date.issued.none.fl_str_mv | 2021 |
dc.description.abstract.none.fl_txt_mv | In wireless communications, optimizing the resource allocation requires the knowledge of the state of the channel. This is even more important in device-to-device communications, one typical use case in 5G/6G networks, where such knowledge is hard to obtain at reasonable signaling costs. In this paper, we study the use of graph-based machine learning methods to address this problem. That is to say, we learn to predict the channel state on a given link through measurements on other links, thus decreasing signaling overhead. In particular, we model the problem as a link-prediction one and we consider two representative approaches: Random Dot Product Graphs and Graph Neural Networks. The key point is that these methods consider the geometric structure underlying the data. They thus enable better generalization and require less training data than classic methods, as we show on our evaluation using a dataset of RSSI measurements of real-world Wi-Fi operating networks. |
dc.description.sponsorship.none.fl_txt_mv | Este trabajo ha sido apoyado por la Agencia Nacional de Investigación e Innovación (ANII), Uruguay, subvenciones Fondo Maria Viñas 3 2018 1 148149 y Fondo María Viñas 1 2019 1 155700. |
dc.format.extent.es.fl_str_mv | 5 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Rattaro, C., Larroca, F. y Capdehourat, G. Predicting wireless RSSI using machine learning on graphs [en línea]. EN: IEEE URUCON 2021, Montevideo, Uruguay, 24-26 nov. 2021, 5 p. DOI 10.1109/URUCON53396.2021.9647374 |
dc.identifier.doi.none.fl_str_mv | 10.1109/URUCON53396.2021.9647374 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/30570 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | IEEE |
dc.relation.ispartof.es.fl_str_mv | IEEE URUCON 2021 , Montevideo, Uruguay, 24-26 nov. 2021, pp. 372-376. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.en.fl_str_mv | Wireless communication Knowledge engineering Costs Training data Machine learning Particle measurements Graph neural networks Embeddings Link-prediction |
dc.subject.es.fl_str_mv | Graph representation learning |
dc.title.none.fl_str_mv | Predicting wireless RSSI using machine learning on graphs. |
dc.type.es.fl_str_mv | Ponencia |
dc.type.none.fl_str_mv | info:eu-repo/semantics/conferenceObject |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | In wireless communications, optimizing the resource allocation requires the knowledge of the state of the channel. This is even more important in device-to-device communications, one typical use case in 5G/6G networks, where such knowledge is hard to obtain at reasonable signaling costs. In this paper, we study the use of graph-based machine learning methods to address this problem. That is to say, we learn to predict the channel state on a given link through measurements on other links, thus decreasing signaling overhead. In particular, we model the problem as a link-prediction one and we consider two representative approaches: Random Dot Product Graphs and Graph Neural Networks. The key point is that these methods consider the geometric structure underlying the data. They thus enable better generalization and require less training data than classic methods, as we show on our evaluation using a dataset of RSSI measurements of real-world Wi-Fi operating networks. |
eu_rights_str_mv | openAccess |
format | conferenceObject |
id | COLIBRI_1a242f773a293b3d07603b06369a74ac |
identifier_str_mv | Rattaro, C., Larroca, F. y Capdehourat, G. Predicting wireless RSSI using machine learning on graphs [en línea]. EN: IEEE URUCON 2021, Montevideo, Uruguay, 24-26 nov. 2021, 5 p. DOI 10.1109/URUCON53396.2021.9647374 10.1109/URUCON53396.2021.9647374 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/30570 |
publishDate | 2021 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Rattaro Claudina, Universidad de la República (Uruguay). Facultad de Ingeniería.Larroca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.Capdehourat Germán, Universidad de la República (Uruguay). Facultad de Ingeniería.2021-12-29T17:28:47Z2021-12-29T17:28:47Z2021Rattaro, C., Larroca, F. y Capdehourat, G. Predicting wireless RSSI using machine learning on graphs [en línea]. EN: IEEE URUCON 2021, Montevideo, Uruguay, 24-26 nov. 2021, 5 p. DOI 10.1109/URUCON53396.2021.9647374https://hdl.handle.net/20.500.12008/3057010.1109/URUCON53396.2021.9647374In wireless communications, optimizing the resource allocation requires the knowledge of the state of the channel. This is even more important in device-to-device communications, one typical use case in 5G/6G networks, where such knowledge is hard to obtain at reasonable signaling costs. In this paper, we study the use of graph-based machine learning methods to address this problem. That is to say, we learn to predict the channel state on a given link through measurements on other links, thus decreasing signaling overhead. In particular, we model the problem as a link-prediction one and we consider two representative approaches: Random Dot Product Graphs and Graph Neural Networks. The key point is that these methods consider the geometric structure underlying the data. They thus enable better generalization and require less training data than classic methods, as we show on our evaluation using a dataset of RSSI measurements of real-world Wi-Fi operating networks.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2021-12-28T16:48:45Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) RLC21.pdf: 197460 bytes, checksum: bff8cbf09c8062113c7f93a89ea2fa72 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2021-12-29T17:27:30Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) RLC21.pdf: 197460 bytes, checksum: bff8cbf09c8062113c7f93a89ea2fa72 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2021-12-29T17:28:47Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) RLC21.pdf: 197460 bytes, checksum: bff8cbf09c8062113c7f93a89ea2fa72 (MD5) Previous issue date: 2021Este trabajo ha sido apoyado por la Agencia Nacional de Investigación e Innovación (ANII), Uruguay, subvenciones Fondo Maria Viñas 3 2018 1 148149 y Fondo María Viñas 1 2019 1 155700.5 p.application/pdfenengIEEEIEEE URUCON 2021 , Montevideo, Uruguay, 24-26 nov. 2021, pp. 372-376.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Wireless communicationKnowledge engineeringCostsTraining dataMachine learningParticle measurementsGraph neural networksEmbeddingsLink-predictionGraph representation learningPredicting wireless RSSI using machine learning on graphs.Ponenciainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaRattaro, ClaudinaLarroca, FedericoCapdehourat, GermánLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/30570/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/30570/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/30570/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/30570/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALRLC21.pdfRLC21.pdfapplication/pdf197460http://localhost:8080/xmlui/bitstream/20.500.12008/30570/1/RLC21.pdfbff8cbf09c8062113c7f93a89ea2fa72MD5120.500.12008/305702021-12-29 14:30:14.113oai:colibri.udelar.edu.uy:20.500.12008/30570VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:16.679999COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Predicting wireless RSSI using machine learning on graphs. Rattaro, Claudina Wireless communication Knowledge engineering Costs Training data Machine learning Particle measurements Graph neural networks Embeddings Link-prediction Graph representation learning |
status_str | publishedVersion |
title | Predicting wireless RSSI using machine learning on graphs. |
title_full | Predicting wireless RSSI using machine learning on graphs. |
title_fullStr | Predicting wireless RSSI using machine learning on graphs. |
title_full_unstemmed | Predicting wireless RSSI using machine learning on graphs. |
title_short | Predicting wireless RSSI using machine learning on graphs. |
title_sort | Predicting wireless RSSI using machine learning on graphs. |
topic | Wireless communication Knowledge engineering Costs Training data Machine learning Particle measurements Graph neural networks Embeddings Link-prediction Graph representation learning |
url | https://hdl.handle.net/20.500.12008/30570 |