Minimum delay load-balancing via nonparametric regression and no-regret algorithms

Larroca, Federico - Rougier, Jean-Louis

Resumen:

In the current network scenario, where traffic is increasingly dynamic and resource demanding, Dynamic Load-Balancing (DLB) has been shown to be an excellent Traffic Engineering tool. In particular, we are interested in the problem of minimum delay load-balancing. That is to say, we assume that the queueing delay of a link is given by a function of its load. The objective is then to adjust the traffic distribution over paths so that, for the current traffic demand, the addition of these functions times the load is minimized. The contribution of our article is twofold. Firstly, we analyze the possibility of using so-called no-regret algorithms to perform the load balancing. As opposed to other distributed optimization algorithms (such as the classical gradient descent) the algorithm we discuss requires no fine-tuning of any speed-controlling parameter. Secondly, we present a framework that does not assume any particular model for the queueing delay function, and instead learns it from measurements. This way, the resulting mean delay of optimizing with this learnt function is an excellent approximation of the real minimum delay traffic distribution. The whole framework is illustrated by several packet and flow level simulations. Keywords: Wardrop Equilibrium, Convex Nonparametric Least Squares, Weighted Least Squares, No-Regret


Detalles Bibliográficos
2012
Wardrop equilibrium
Convex nonparametric least squares
Weighted least squares
No-regret
Telecomunicaciones
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/41164
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522992750592000
author Larroca, Federico
author2 Rougier, Jean-Louis
author2_role author
author_facet Larroca, Federico
Rougier, Jean-Louis
author_role author
bitstream.checksum.fl_str_mv 7f2e2c17ef6585de66da58d1bfa8b5e1
9833653f73f7853880c94a6fead477b1
4afdbb8c545fd630ea7db775da747b2f
9da0b6dfac957114c6a7714714b86306
0cf075e8b80f882316dc2771a207376b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/41164/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/41164/2/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/41164/3/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/41164/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/41164/1/LR12.pdf
collection COLIBRI
dc.creator.none.fl_str_mv Larroca, Federico
Rougier, Jean-Louis
dc.date.accessioned.none.fl_str_mv 2023-11-14T17:04:37Z
dc.date.available.none.fl_str_mv 2023-11-14T17:04:37Z
dc.date.issued.es.fl_str_mv 2012
dc.date.submitted.es.fl_str_mv 20231114
dc.description.abstract.none.fl_txt_mv In the current network scenario, where traffic is increasingly dynamic and resource demanding, Dynamic Load-Balancing (DLB) has been shown to be an excellent Traffic Engineering tool. In particular, we are interested in the problem of minimum delay load-balancing. That is to say, we assume that the queueing delay of a link is given by a function of its load. The objective is then to adjust the traffic distribution over paths so that, for the current traffic demand, the addition of these functions times the load is minimized. The contribution of our article is twofold. Firstly, we analyze the possibility of using so-called no-regret algorithms to perform the load balancing. As opposed to other distributed optimization algorithms (such as the classical gradient descent) the algorithm we discuss requires no fine-tuning of any speed-controlling parameter. Secondly, we present a framework that does not assume any particular model for the queueing delay function, and instead learns it from measurements. This way, the resulting mean delay of optimizing with this learnt function is an excellent approximation of the real minimum delay traffic distribution. The whole framework is illustrated by several packet and flow level simulations. Keywords: Wardrop Equilibrium, Convex Nonparametric Least Squares, Weighted Least Squares, No-Regret
dc.identifier.citation.es.fl_str_mv Larroca, F, Rougier, JL."Minimum delay load-balancing via nonparametric regression and no-regret algorithms" [Preprint] Publicado en Computer Networks, 2012 v. 56, n.4, pp. 1152-1166. https://doi.org/10.1016/j.comnet.2011.11.015
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/41164
dc.language.iso.none.fl_str_mv en
eng
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Wardrop equilibrium
Convex nonparametric least squares
Weighted least squares
No-regret
dc.subject.other.es.fl_str_mv Telecomunicaciones
dc.title.none.fl_str_mv Minimum delay load-balancing via nonparametric regression and no-regret algorithms
dc.type.es.fl_str_mv Preprint
dc.type.none.fl_str_mv info:eu-repo/semantics/preprint
dc.type.version.none.fl_str_mv info:eu-repo/semantics/submittedVersion
description In the current network scenario, where traffic is increasingly dynamic and resource demanding, Dynamic Load-Balancing (DLB) has been shown to be an excellent Traffic Engineering tool. In particular, we are interested in the problem of minimum delay load-balancing. That is to say, we assume that the queueing delay of a link is given by a function of its load. The objective is then to adjust the traffic distribution over paths so that, for the current traffic demand, the addition of these functions times the load is minimized. The contribution of our article is twofold. Firstly, we analyze the possibility of using so-called no-regret algorithms to perform the load balancing. As opposed to other distributed optimization algorithms (such as the classical gradient descent) the algorithm we discuss requires no fine-tuning of any speed-controlling parameter. Secondly, we present a framework that does not assume any particular model for the queueing delay function, and instead learns it from measurements. This way, the resulting mean delay of optimizing with this learnt function is an excellent approximation of the real minimum delay traffic distribution. The whole framework is illustrated by several packet and flow level simulations. Keywords: Wardrop Equilibrium, Convex Nonparametric Least Squares, Weighted Least Squares, No-Regret
eu_rights_str_mv openAccess
format preprint
id COLIBRI_19b9c6b892379a67eeacbbc009ab4ac5
identifier_str_mv Larroca, F, Rougier, JL."Minimum delay load-balancing via nonparametric regression and no-regret algorithms" [Preprint] Publicado en Computer Networks, 2012 v. 56, n.4, pp. 1152-1166. https://doi.org/10.1016/j.comnet.2011.11.015
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/41164
publishDate 2012
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling 2023-11-14T17:04:37Z2023-11-14T17:04:37Z201220231114Larroca, F, Rougier, JL."Minimum delay load-balancing via nonparametric regression and no-regret algorithms" [Preprint] Publicado en Computer Networks, 2012 v. 56, n.4, pp. 1152-1166. https://doi.org/10.1016/j.comnet.2011.11.015https://hdl.handle.net/20.500.12008/41164In the current network scenario, where traffic is increasingly dynamic and resource demanding, Dynamic Load-Balancing (DLB) has been shown to be an excellent Traffic Engineering tool. In particular, we are interested in the problem of minimum delay load-balancing. That is to say, we assume that the queueing delay of a link is given by a function of its load. The objective is then to adjust the traffic distribution over paths so that, for the current traffic demand, the addition of these functions times the load is minimized. The contribution of our article is twofold. Firstly, we analyze the possibility of using so-called no-regret algorithms to perform the load balancing. As opposed to other distributed optimization algorithms (such as the classical gradient descent) the algorithm we discuss requires no fine-tuning of any speed-controlling parameter. Secondly, we present a framework that does not assume any particular model for the queueing delay function, and instead learns it from measurements. This way, the resulting mean delay of optimizing with this learnt function is an excellent approximation of the real minimum delay traffic distribution. The whole framework is illustrated by several packet and flow level simulations. Keywords: Wardrop Equilibrium, Convex Nonparametric Least Squares, Weighted Least Squares, No-RegretMade available in DSpace on 2023-11-14T17:04:37Z (GMT). No. of bitstreams: 5 LR12.pdf: 525301 bytes, checksum: 0cf075e8b80f882316dc2771a207376b (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4194 bytes, checksum: 7f2e2c17ef6585de66da58d1bfa8b5e1 (MD5) Previous issue date: 2012enengLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Wardrop equilibriumConvex nonparametric least squaresWeighted least squaresNo-regretTelecomunicacionesMinimum delay load-balancing via nonparametric regression and no-regret algorithmsPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaLarroca, FedericoRougier, Jean-LouisTelecomunicacionesAnálisis de Redes, Tráfico y Estadísticas de ServiciosLICENSElicense.txttext/plain4194http://localhost:8080/xmlui/bitstream/20.500.12008/41164/5/license.txt7f2e2c17ef6585de66da58d1bfa8b5e1MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/41164/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/41164/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/41164/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALLR12.pdfapplication/pdf525301http://localhost:8080/xmlui/bitstream/20.500.12008/41164/1/LR12.pdf0cf075e8b80f882316dc2771a207376bMD5120.500.12008/411642024-08-01 18:18:47.132oai:colibri.udelar.edu.uy:20.500.12008/41164VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIAoKQWNlcHRhbmRvIGVsIGF1dG9yIGVzdG9zIHTvv71ybWlub3MgeSBjb25kaWNpb25lcyBkZSBkZXDvv71zaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcO+/vWJsaWNhIHByb2NlZGVy77+9IGE6ICAKCmEpIGFyY2hpdmFyIG3vv71zIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nvv71uCmIpIGNvbnZlcnRpciBsYSBvYnJhIGEgb3Ryb3MgZm9ybWF0b3Mgc2kgZnVlcmEgbmVjZXNhcmlvICBwYXJhIGZhY2lsaXRhciBzdSBwcmVzZXJ2YWNp77+9biB5IGFjY2VzaWJpbGlkYWQgc2luIGFsdGVyYXIgc3UgY29udGVuaWRvLgpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4KCkVsIGF1dG9yIGFzZWd1cmEgcXVlIGxhIG9icmEgbm8gaW5mcmlnZSBuaW5n77+9biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdO+/vSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZW4gZWwgdGV4dG8gbyBjb250ZW5pZG8gZGVsIGRvY3VtZW50byBkZXBvc2l0YWRvIGVuIGVsIFJlcG9zaXRvcmlvLgoKRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLvv70gcmVzcG9uc2FibGUgZGVsIGNvbnRlbmlkbyBkZSBsb3MgZG9jdW1lbnRvcyBxdWUgZGVwb3NpdGEuIExhIFVERUxBUiBubyBzZXLvv70gcmVzcG9uc2FibGUgcG9yIGxhcyBldmVudHVhbGVzIHZpb2xhY2lvbmVzIGFsIGRlcmVjaG8gZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIHF1ZSBwdWVkYSBpbmN1cnJpciBlbCBhdXRvci4KCkFudGUgY3VhbHF1aWVyIGRlbnVuY2lhIGRlIHZpb2xhY2nvv71uIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFy77+9IHRvZGFzIGxhcyBtZWRpZGFzIG5lY2VzYXJpYXMgcGFyYSBldml0YXIgbGEgY29udGludWFjae+/vW4gZGUgZGljaGEgaW5mcmFjY2nvv71uLCBsYXMgcXVlIHBvZHLvv71uIGluY2x1aXIgZWwgcmV0aXJvIGRlbCBhY2Nlc28gYSBsb3MgY29udGVuaWRvcyB5L28gbWV0YWRhdG9zIGRlbCBkb2N1bWVudG8gcmVzcGVjdGl2by4KCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLgoKQXRyaWJ1Y2nvv71uIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIC0gQnktU0EpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgcGVybyBsYSBkaXN0cmlidWNp77+9biBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTvv71udGljYSBhIGxhIGRlIGxhIG9icmEgb3JpZ2luYWwsIHJlY29ub2NpZW5kbyBhIGxvcyBhdXRvcmVzLgoKQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwgKENDIC0gQnktTkMpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBzaWVtcHJlIHkgY3VhbmRvIGVzb3MgdXNvcyBubyB0ZW5nYW4gZmluZXMgY29tZXJjaWFsZXMsIHJlY29ub2NpZW5kbyBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIO+/vSBCeS1OQy1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIHNpZW1wcmUgeSBjdWFuZG8gZXNvcyB1c29zIG5vIHRlbmdhbiBmaW5lcyBjb21lcmNpYWxlcyB5IGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgc2UgaGFnYSBtZWRpYW50ZSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjae+/vW4g77+9IE5vIENvbWVyY2lhbCDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1OQy1ORCk6IFBlcm1pdGUgdXNhciBsYSBvYnJhLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMgeSBubyBzZSBwZXJtaXRlIHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4KCkN1YW5kbyBzZSBzZWxlY2Npb25lIHVuYSBsaWNlbmNpYSBxdWUgaGFiaWxpdGUgdXNvcyBjb21lcmNpYWxlcywgZWwgZGVw77+9c2l0byBkZWJlcu+/vSBzZXIgYWNvbXBh77+9YWRvIGRlbCBhdmFsIGRlbCBqZXJhcmNhIG3vv714aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCgoKCgoKCgoKUniversidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-08-13T03:00:57.991989COLIBRI - Universidad de la Repúblicafalse
spellingShingle Minimum delay load-balancing via nonparametric regression and no-regret algorithms
Larroca, Federico
Wardrop equilibrium
Convex nonparametric least squares
Weighted least squares
No-regret
Telecomunicaciones
status_str submittedVersion
title Minimum delay load-balancing via nonparametric regression and no-regret algorithms
title_full Minimum delay load-balancing via nonparametric regression and no-regret algorithms
title_fullStr Minimum delay load-balancing via nonparametric regression and no-regret algorithms
title_full_unstemmed Minimum delay load-balancing via nonparametric regression and no-regret algorithms
title_short Minimum delay load-balancing via nonparametric regression and no-regret algorithms
title_sort Minimum delay load-balancing via nonparametric regression and no-regret algorithms
topic Wardrop equilibrium
Convex nonparametric least squares
Weighted least squares
No-regret
Telecomunicaciones
url https://hdl.handle.net/20.500.12008/41164