Aprendizaje automático para competencias deportivas

Maidana, Christian - Ferreyra, Vicente

Supervisor(es): González Ramírez, Andrés - Moncecchi, Guillermo - Etcheverry, Lorena

Resumen:

La Ciencia de Datos (CD) es un campo interdisciplinario que utiliza métodos científicos, procesos, algoritmos y sistemas para extraer conocimiento u obtener un mejor entendimiento de datos estructurados o no estructurados. La CD aplicada al deporte es relevante tanto para la academia como para la industria, dado que permite realizar análisis que antes no eran posibles, teniendo como consecuencia impacto en la toma de decisiones, como por ejemplo el fichaje de jugadores, predicción de resultados, etc. En este proyecto se elabora una investigación de los desarrollos existentes referentes a la CD aplicada al deporte, tanto estudios académicos como innovaciones del ámbito privado, realizando un análisis más exhaustivo sobre el fútbol. A su vez, se detallan algunas fuentes de datos disponibles que podrían usarse para la aplicación de CD. Con el fin de generar una herramienta que aporte información de utilidad para los entrenadores, se elabora un prototipo para la predicción de distintos atributos (tiros de esquina y tiros al arco). A partir de datos obtenidos de Whoscored de las temporadas 2016 a 2019/2020 y el uso de tres clasificadores K Nearest Neighbors, Random forest y Regresión lineal, se logran resultados auspiciosos llegando a una accuracy de 87 % para tiros de esquina y 62 % para tiros al arco.


Detalles Bibliográficos
2021
Inteligencia artificial
Aprendizaje automático
Deporte
Fútbol
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/35063
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523228884664320
author Maidana, Christian
author2 Ferreyra, Vicente
author2_role author
author_facet Maidana, Christian
Ferreyra, Vicente
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
307e2cbbe5f4d80e683530e98ec49bc0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/35063/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/35063/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/35063/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/35063/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/35063/1/MF21.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Maidana Christian, Universidad de la República (Uruguay). Facultad de Ingeniería
Ferreyra Vicente, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.creator.advisor.none.fl_str_mv González Ramírez, Andrés
Moncecchi, Guillermo
Etcheverry, Lorena
dc.creator.none.fl_str_mv Maidana, Christian
Ferreyra, Vicente
dc.date.accessioned.none.fl_str_mv 2022-11-28T15:44:50Z
dc.date.available.none.fl_str_mv 2022-11-28T15:44:50Z
dc.date.issued.none.fl_str_mv 2021
dc.description.abstract.none.fl_txt_mv La Ciencia de Datos (CD) es un campo interdisciplinario que utiliza métodos científicos, procesos, algoritmos y sistemas para extraer conocimiento u obtener un mejor entendimiento de datos estructurados o no estructurados. La CD aplicada al deporte es relevante tanto para la academia como para la industria, dado que permite realizar análisis que antes no eran posibles, teniendo como consecuencia impacto en la toma de decisiones, como por ejemplo el fichaje de jugadores, predicción de resultados, etc. En este proyecto se elabora una investigación de los desarrollos existentes referentes a la CD aplicada al deporte, tanto estudios académicos como innovaciones del ámbito privado, realizando un análisis más exhaustivo sobre el fútbol. A su vez, se detallan algunas fuentes de datos disponibles que podrían usarse para la aplicación de CD. Con el fin de generar una herramienta que aporte información de utilidad para los entrenadores, se elabora un prototipo para la predicción de distintos atributos (tiros de esquina y tiros al arco). A partir de datos obtenidos de Whoscored de las temporadas 2016 a 2019/2020 y el uso de tres clasificadores K Nearest Neighbors, Random forest y Regresión lineal, se logran resultados auspiciosos llegando a una accuracy de 87 % para tiros de esquina y 62 % para tiros al arco.
dc.format.extent.es.fl_str_mv 67 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Maidana, C. y Ferreyra, V. Aprendizaje automático para competencias deportivas [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2021.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/35063
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar.FI
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Inteligencia artificial
Aprendizaje automático
Deporte
Fútbol
dc.title.none.fl_str_mv Aprendizaje automático para competencias deportivas
dc.type.es.fl_str_mv Tesis de grado
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description La Ciencia de Datos (CD) es un campo interdisciplinario que utiliza métodos científicos, procesos, algoritmos y sistemas para extraer conocimiento u obtener un mejor entendimiento de datos estructurados o no estructurados. La CD aplicada al deporte es relevante tanto para la academia como para la industria, dado que permite realizar análisis que antes no eran posibles, teniendo como consecuencia impacto en la toma de decisiones, como por ejemplo el fichaje de jugadores, predicción de resultados, etc. En este proyecto se elabora una investigación de los desarrollos existentes referentes a la CD aplicada al deporte, tanto estudios académicos como innovaciones del ámbito privado, realizando un análisis más exhaustivo sobre el fútbol. A su vez, se detallan algunas fuentes de datos disponibles que podrían usarse para la aplicación de CD. Con el fin de generar una herramienta que aporte información de utilidad para los entrenadores, se elabora un prototipo para la predicción de distintos atributos (tiros de esquina y tiros al arco). A partir de datos obtenidos de Whoscored de las temporadas 2016 a 2019/2020 y el uso de tres clasificadores K Nearest Neighbors, Random forest y Regresión lineal, se logran resultados auspiciosos llegando a una accuracy de 87 % para tiros de esquina y 62 % para tiros al arco.
eu_rights_str_mv openAccess
format bachelorThesis
id COLIBRI_16994590a06b9f55c0c7e97dadf6f782
identifier_str_mv Maidana, C. y Ferreyra, V. Aprendizaje automático para competencias deportivas [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2021.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/35063
publishDate 2021
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Maidana Christian, Universidad de la República (Uruguay). Facultad de IngenieríaFerreyra Vicente, Universidad de la República (Uruguay). Facultad de Ingeniería2022-11-28T15:44:50Z2022-11-28T15:44:50Z2021Maidana, C. y Ferreyra, V. Aprendizaje automático para competencias deportivas [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2021.https://hdl.handle.net/20.500.12008/35063La Ciencia de Datos (CD) es un campo interdisciplinario que utiliza métodos científicos, procesos, algoritmos y sistemas para extraer conocimiento u obtener un mejor entendimiento de datos estructurados o no estructurados. La CD aplicada al deporte es relevante tanto para la academia como para la industria, dado que permite realizar análisis que antes no eran posibles, teniendo como consecuencia impacto en la toma de decisiones, como por ejemplo el fichaje de jugadores, predicción de resultados, etc. En este proyecto se elabora una investigación de los desarrollos existentes referentes a la CD aplicada al deporte, tanto estudios académicos como innovaciones del ámbito privado, realizando un análisis más exhaustivo sobre el fútbol. A su vez, se detallan algunas fuentes de datos disponibles que podrían usarse para la aplicación de CD. Con el fin de generar una herramienta que aporte información de utilidad para los entrenadores, se elabora un prototipo para la predicción de distintos atributos (tiros de esquina y tiros al arco). A partir de datos obtenidos de Whoscored de las temporadas 2016 a 2019/2020 y el uso de tres clasificadores K Nearest Neighbors, Random forest y Regresión lineal, se logran resultados auspiciosos llegando a una accuracy de 87 % para tiros de esquina y 62 % para tiros al arco.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2022-11-28T14:45:05Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MF21.pdf: 2037047 bytes, checksum: 307e2cbbe5f4d80e683530e98ec49bc0 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-11-28T15:31:21Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MF21.pdf: 2037047 bytes, checksum: 307e2cbbe5f4d80e683530e98ec49bc0 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-11-28T15:44:50Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MF21.pdf: 2037047 bytes, checksum: 307e2cbbe5f4d80e683530e98ec49bc0 (MD5) Previous issue date: 202167 p.application/pdfesspaUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Inteligencia artificialAprendizaje automáticoDeporteFútbolAprendizaje automático para competencias deportivasTesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaMaidana, ChristianFerreyra, VicenteGonzález Ramírez, AndrésMoncecchi, GuillermoEtcheverry, LorenaUniversidad de la República (Uruguay). Facultad de IngenieríaIngeniero en ComputaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/35063/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/35063/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/35063/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/35063/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALMF21.pdfMF21.pdfapplication/pdf2037047http://localhost:8080/xmlui/bitstream/20.500.12008/35063/1/MF21.pdf307e2cbbe5f4d80e683530e98ec49bc0MD5120.500.12008/350632024-04-12 14:06:40.895oai:colibri.udelar.edu.uy:20.500.12008/35063VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:27.217748COLIBRI - Universidad de la Repúblicafalse
spellingShingle Aprendizaje automático para competencias deportivas
Maidana, Christian
Inteligencia artificial
Aprendizaje automático
Deporte
Fútbol
status_str acceptedVersion
title Aprendizaje automático para competencias deportivas
title_full Aprendizaje automático para competencias deportivas
title_fullStr Aprendizaje automático para competencias deportivas
title_full_unstemmed Aprendizaje automático para competencias deportivas
title_short Aprendizaje automático para competencias deportivas
title_sort Aprendizaje automático para competencias deportivas
topic Inteligencia artificial
Aprendizaje automático
Deporte
Fútbol
url https://hdl.handle.net/20.500.12008/35063