Análisis de noticias sobre seguridad ciudadana en redes sociales

Dominguez, Leandro - Eijo, Guillermo - Felix, Sebastian

Supervisor(es): Rosá, Aiala - Moncecchi, Guillermo

Resumen:

Los medios de comunicación tienen una fuerte injerencia en la opinión de las personas. Hoy en día, estos utilizan cada vez más la red social Twitter como medio de difusión de noticias. Según Latinobarómetro, la seguridad ciudadana es el tema que más preocupa a la sociedad uruguaya desde el 2006. En función de esto, el presente trabajo busca generar una herramienta que permita a cualquier persona realizar un seguimiento de la temática de Seguridad, a través del análisis de tweets que publican diversos medios de prensa escrita. Se trabajó en conjunto con investigadores y estudiantes de Facultad de Ciencias Sociales para etiquetar más de dos mil de esos tweets, que luego se utilizaron para entrenar un modelo de aprendizaje automático que identificara los que tratan sobre seguridad. Para representar los tweets se realizaron varias pruebas en base al algoritmo autosupervisado Word2Vec, pruebas con la variante simple y la variante enriquecida con subpalabras, y también con dos implementaciones diferentes: Skipgram y Continuous Bag of Words (CBOW). Se implementaron herramientas para la detección de tópicos y entidades nombradas. Para la detección de tópicos, se utilizó una mezcla de varias técnicas, empleando un enfoque de aprendizaje no supervisado para agrupar las noticias haciendo uso de su representación vectorial. A esta representación vectorial se le aplica el algoritmo de k-means para detectar agrupaciones semánticas. Dentro de estas se utiliza el algoritmo Latent Dirichlet Allocation (LDA) para detectar tópicos formados por conjuntos de diez palabras. Para la detección de entidades nombradas, se realizaron pruebas con dos implementaciones: Stanza y Spacy. Ambas son bibliotecas utilizadas en el área para tareas de PLN. Luego se utilizó un conjunto previamente etiquetado para comparar los resultados de cada implementación. Se desplegó una aplicación que permite visualizar todos los datos y navegar con distintos filtros. Por otro lado, existe un script de Python encargado de descargar los nuevos tweets publicados, procesarlos y actualizar la base de datos con la nueva información. Además de la tarea de implementación, el presente trabajo requirió contacto estrecho con el beneficiario del producto, teniendo reuniones periódicas donde se pactaron funcionalidades según necesidades y tiempo disponible.


Detalles Bibliográficos
2022
Aprendizaje automático
Aprendizaje supervisado
Aprendizaje no supervisado
Procesamiento de lenguaje natural
Twitter
Red social
Seguridad
Clasificación
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/33832
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523228667609088
author Dominguez, Leandro
author2 Eijo, Guillermo
Felix, Sebastian
author2_role author
author
author_facet Dominguez, Leandro
Eijo, Guillermo
Felix, Sebastian
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
6343e56e62410efc3d1d05e5240ed5e2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/33832/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/33832/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/33832/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/33832/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/33832/1/DEF22.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Dominguez Leandro, Universidad de la República (Uruguay). Facultad de Ingeniería
Eijo Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería
Felix Sebastian, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.creator.advisor.none.fl_str_mv Rosá, Aiala
Moncecchi, Guillermo
dc.creator.none.fl_str_mv Dominguez, Leandro
Eijo, Guillermo
Felix, Sebastian
dc.date.accessioned.none.fl_str_mv 2022-09-13T18:37:39Z
dc.date.available.none.fl_str_mv 2022-09-13T18:37:39Z
dc.date.issued.none.fl_str_mv 2022
dc.description.abstract.none.fl_txt_mv Los medios de comunicación tienen una fuerte injerencia en la opinión de las personas. Hoy en día, estos utilizan cada vez más la red social Twitter como medio de difusión de noticias. Según Latinobarómetro, la seguridad ciudadana es el tema que más preocupa a la sociedad uruguaya desde el 2006. En función de esto, el presente trabajo busca generar una herramienta que permita a cualquier persona realizar un seguimiento de la temática de Seguridad, a través del análisis de tweets que publican diversos medios de prensa escrita. Se trabajó en conjunto con investigadores y estudiantes de Facultad de Ciencias Sociales para etiquetar más de dos mil de esos tweets, que luego se utilizaron para entrenar un modelo de aprendizaje automático que identificara los que tratan sobre seguridad. Para representar los tweets se realizaron varias pruebas en base al algoritmo autosupervisado Word2Vec, pruebas con la variante simple y la variante enriquecida con subpalabras, y también con dos implementaciones diferentes: Skipgram y Continuous Bag of Words (CBOW). Se implementaron herramientas para la detección de tópicos y entidades nombradas. Para la detección de tópicos, se utilizó una mezcla de varias técnicas, empleando un enfoque de aprendizaje no supervisado para agrupar las noticias haciendo uso de su representación vectorial. A esta representación vectorial se le aplica el algoritmo de k-means para detectar agrupaciones semánticas. Dentro de estas se utiliza el algoritmo Latent Dirichlet Allocation (LDA) para detectar tópicos formados por conjuntos de diez palabras. Para la detección de entidades nombradas, se realizaron pruebas con dos implementaciones: Stanza y Spacy. Ambas son bibliotecas utilizadas en el área para tareas de PLN. Luego se utilizó un conjunto previamente etiquetado para comparar los resultados de cada implementación. Se desplegó una aplicación que permite visualizar todos los datos y navegar con distintos filtros. Por otro lado, existe un script de Python encargado de descargar los nuevos tweets publicados, procesarlos y actualizar la base de datos con la nueva información. Además de la tarea de implementación, el presente trabajo requirió contacto estrecho con el beneficiario del producto, teniendo reuniones periódicas donde se pactaron funcionalidades según necesidades y tiempo disponible.
dc.format.extent.es.fl_str_mv 84 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Dominguez, L., Eijo, G. y Felix, S. Análisis de noticias sobre seguridad ciudadana en redes sociales [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2022.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/33832
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar.FI
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Aprendizaje automático
Aprendizaje supervisado
Aprendizaje no supervisado
Procesamiento de lenguaje natural
Twitter
Red social
Seguridad
Clasificación
dc.title.none.fl_str_mv Análisis de noticias sobre seguridad ciudadana en redes sociales
dc.type.es.fl_str_mv Tesis de grado
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Los medios de comunicación tienen una fuerte injerencia en la opinión de las personas. Hoy en día, estos utilizan cada vez más la red social Twitter como medio de difusión de noticias. Según Latinobarómetro, la seguridad ciudadana es el tema que más preocupa a la sociedad uruguaya desde el 2006. En función de esto, el presente trabajo busca generar una herramienta que permita a cualquier persona realizar un seguimiento de la temática de Seguridad, a través del análisis de tweets que publican diversos medios de prensa escrita. Se trabajó en conjunto con investigadores y estudiantes de Facultad de Ciencias Sociales para etiquetar más de dos mil de esos tweets, que luego se utilizaron para entrenar un modelo de aprendizaje automático que identificara los que tratan sobre seguridad. Para representar los tweets se realizaron varias pruebas en base al algoritmo autosupervisado Word2Vec, pruebas con la variante simple y la variante enriquecida con subpalabras, y también con dos implementaciones diferentes: Skipgram y Continuous Bag of Words (CBOW). Se implementaron herramientas para la detección de tópicos y entidades nombradas. Para la detección de tópicos, se utilizó una mezcla de varias técnicas, empleando un enfoque de aprendizaje no supervisado para agrupar las noticias haciendo uso de su representación vectorial. A esta representación vectorial se le aplica el algoritmo de k-means para detectar agrupaciones semánticas. Dentro de estas se utiliza el algoritmo Latent Dirichlet Allocation (LDA) para detectar tópicos formados por conjuntos de diez palabras. Para la detección de entidades nombradas, se realizaron pruebas con dos implementaciones: Stanza y Spacy. Ambas son bibliotecas utilizadas en el área para tareas de PLN. Luego se utilizó un conjunto previamente etiquetado para comparar los resultados de cada implementación. Se desplegó una aplicación que permite visualizar todos los datos y navegar con distintos filtros. Por otro lado, existe un script de Python encargado de descargar los nuevos tweets publicados, procesarlos y actualizar la base de datos con la nueva información. Además de la tarea de implementación, el presente trabajo requirió contacto estrecho con el beneficiario del producto, teniendo reuniones periódicas donde se pactaron funcionalidades según necesidades y tiempo disponible.
eu_rights_str_mv openAccess
format bachelorThesis
id COLIBRI_1560e1b71fa5a79e3976f6747c18eb45
identifier_str_mv Dominguez, L., Eijo, G. y Felix, S. Análisis de noticias sobre seguridad ciudadana en redes sociales [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2022.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/33832
publishDate 2022
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Dominguez Leandro, Universidad de la República (Uruguay). Facultad de IngenieríaEijo Guillermo, Universidad de la República (Uruguay). Facultad de IngenieríaFelix Sebastian, Universidad de la República (Uruguay). Facultad de Ingeniería2022-09-13T18:37:39Z2022-09-13T18:37:39Z2022Dominguez, L., Eijo, G. y Felix, S. Análisis de noticias sobre seguridad ciudadana en redes sociales [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2022.https://hdl.handle.net/20.500.12008/33832Los medios de comunicación tienen una fuerte injerencia en la opinión de las personas. Hoy en día, estos utilizan cada vez más la red social Twitter como medio de difusión de noticias. Según Latinobarómetro, la seguridad ciudadana es el tema que más preocupa a la sociedad uruguaya desde el 2006. En función de esto, el presente trabajo busca generar una herramienta que permita a cualquier persona realizar un seguimiento de la temática de Seguridad, a través del análisis de tweets que publican diversos medios de prensa escrita. Se trabajó en conjunto con investigadores y estudiantes de Facultad de Ciencias Sociales para etiquetar más de dos mil de esos tweets, que luego se utilizaron para entrenar un modelo de aprendizaje automático que identificara los que tratan sobre seguridad. Para representar los tweets se realizaron varias pruebas en base al algoritmo autosupervisado Word2Vec, pruebas con la variante simple y la variante enriquecida con subpalabras, y también con dos implementaciones diferentes: Skipgram y Continuous Bag of Words (CBOW). Se implementaron herramientas para la detección de tópicos y entidades nombradas. Para la detección de tópicos, se utilizó una mezcla de varias técnicas, empleando un enfoque de aprendizaje no supervisado para agrupar las noticias haciendo uso de su representación vectorial. A esta representación vectorial se le aplica el algoritmo de k-means para detectar agrupaciones semánticas. Dentro de estas se utiliza el algoritmo Latent Dirichlet Allocation (LDA) para detectar tópicos formados por conjuntos de diez palabras. Para la detección de entidades nombradas, se realizaron pruebas con dos implementaciones: Stanza y Spacy. Ambas son bibliotecas utilizadas en el área para tareas de PLN. Luego se utilizó un conjunto previamente etiquetado para comparar los resultados de cada implementación. Se desplegó una aplicación que permite visualizar todos los datos y navegar con distintos filtros. Por otro lado, existe un script de Python encargado de descargar los nuevos tweets publicados, procesarlos y actualizar la base de datos con la nueva información. Además de la tarea de implementación, el presente trabajo requirió contacto estrecho con el beneficiario del producto, teniendo reuniones periódicas donde se pactaron funcionalidades según necesidades y tiempo disponible.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2022-09-13T14:09:03Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) DEF22.pdf: 8873579 bytes, checksum: 6343e56e62410efc3d1d05e5240ed5e2 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-09-13T17:52:38Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) DEF22.pdf: 8873579 bytes, checksum: 6343e56e62410efc3d1d05e5240ed5e2 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-09-13T18:37:39Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) DEF22.pdf: 8873579 bytes, checksum: 6343e56e62410efc3d1d05e5240ed5e2 (MD5) Previous issue date: 202284 p.application/pdfesspaUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Aprendizaje automáticoAprendizaje supervisadoAprendizaje no supervisadoProcesamiento de lenguaje naturalTwitterRed socialSeguridadClasificaciónAnálisis de noticias sobre seguridad ciudadana en redes socialesTesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaDominguez, LeandroEijo, GuillermoFelix, SebastianRosá, AialaMoncecchi, GuillermoUniversidad de la República (Uruguay). Facultad de IngenieríaIngeniero en ComputaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/33832/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/33832/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/33832/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/33832/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALDEF22.pdfDEF22.pdfapplication/pdf8873579http://localhost:8080/xmlui/bitstream/20.500.12008/33832/1/DEF22.pdf6343e56e62410efc3d1d05e5240ed5e2MD5120.500.12008/338322024-04-12 14:06:40.603oai:colibri.udelar.edu.uy:20.500.12008/33832VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:26.626767COLIBRI - Universidad de la Repúblicafalse
spellingShingle Análisis de noticias sobre seguridad ciudadana en redes sociales
Dominguez, Leandro
Aprendizaje automático
Aprendizaje supervisado
Aprendizaje no supervisado
Procesamiento de lenguaje natural
Twitter
Red social
Seguridad
Clasificación
status_str acceptedVersion
title Análisis de noticias sobre seguridad ciudadana en redes sociales
title_full Análisis de noticias sobre seguridad ciudadana en redes sociales
title_fullStr Análisis de noticias sobre seguridad ciudadana en redes sociales
title_full_unstemmed Análisis de noticias sobre seguridad ciudadana en redes sociales
title_short Análisis de noticias sobre seguridad ciudadana en redes sociales
title_sort Análisis de noticias sobre seguridad ciudadana en redes sociales
topic Aprendizaje automático
Aprendizaje supervisado
Aprendizaje no supervisado
Procesamiento de lenguaje natural
Twitter
Red social
Seguridad
Clasificación
url https://hdl.handle.net/20.500.12008/33832